
VARIABLE–ORDER STARTING

ALGORITHMS FOR IMPLICIT

RUNGE-KUTTA METHODS ON STIFF

PROBLEMS

S. González–Pinto a, J.I. Montijano b and S. Pérez–Rodŕıguez c

aDpto. de Análisis Matemático, Universidad de La Laguna,
38271 La Laguna-Tenerife, Spain. email: spinto@ull.es

bDpto. de Matemática Aplicada, Universidad de Zaragoza, 50009 Zaragoza, Spain.
email: monti@posta.unizar.es

cDpto. de Análisis Matemático, Universidad de La Laguna,
38271 La Laguna-Tenerife, Spain. email: sperezr@ull.es

Abstract

This paper deals with starting algorithms for Newton-type schemes for solving the
stage equations of implicit s–stages Runge-Kutta methods applied to stiff problems.
We present a family of starting algorithms with orders from 0 to s + 1 and, with
estimations of the error in these algorithms, we give a technique for selecting, at
each step, the most convenient in the family. The proposed algorithms, that can be
expressed in terms of divided differences, are based on the Lagrange interpolation
of the stages of the last two integration steps. We also analyse the orders of the
starting algorithms for the non-stiff case, for the Prothero and Robinson model and
the stiff order. Finally, by means of some numerical experiments we show that this
technique allows, in general, to improve greatly the performance and reliability of
implicit Runge-Kutta methods on stiff problems.

AMS subject classifications: 65L05

Key words: Stiff Initial Value Problems, Implicit Runge-Kutta methods, Start-
ing algorithms.

1 This work was supported by project DGES PB97–1018

Preprint submitted to Elsevier Preprint 10 October 2002

1 Introduction.

Starting algorithms for solving the stage equations of fully implicit Runge-
Kutta methods (by means of some Newton type iteration) considered in stan-
dard codes, when applied to stiff problems,

y′(t) = f(t, y), y(0) = y0 ∈ Rm, t ∈ [0, T], (1.1)

are usually based on the Lagrange interpolation of the internal stages of the
preceding integration step. Thus, STRIDE [2,3] and RADAU5 [15, Chap.IV.8]
use such a kind of algorithms. In the last work the authors use for their code
RADAU5, which is based on the three-stage Radau IIA formula, the Lagrange
interpolation of the internal stages of the preceding integration step and of yn.
That is, by considering the Runge-Kutta method (with coefficient matrix A
non–singular),

Yi,n = yn + hn

s∑

j=1

aijf(tn + cjhn, Yj,n) (i = 1, . . . , s), (1.2)

and

yn+1 = ωyn +
s∑

j=1

wjYj,n, (wj)j=1,s = bT A−1, ω = 1−
s∑

j=1

wj, (1.3)

the starting algorithm proposed in order to begin the Newton iteration for the
new step tn+1 → tn+2 = tn+1 + hn+1, is given, for the RADAU5 case (s = 3)
by,

Y 0
i,n+1 := p3(tn+1 + cihn+1), 1 ≤ i ≤ 3, (1.4)

where p3(t) is the interpolation polynomial on the points

{(tn, yn), (tn + cihn, Yi,n), 1 ≤ i ≤ 3}.

Then, the iterative scheme is stopped when the Euclidean norm of the incre-
ment of the stage solution satisfies

‖Y r
i,n+1 − Y r−1

i,n+1‖ ≤ c Tol

where Tol is the error tolerance used for the integration and c is a fixed coef-
ficient that for example in RADAU5 is taken, by default, as 0.03.

In general, starting algorithms based on the internal stages of the preceding
integration step, perform satisfactorily on stiff problems, when the underlying
Runge-Kutta method is a collocation method (or it has a high stage order)
with good stability properties. However, starting algorithms like (1.4) can
make sometimes that standard variable step-size codes fail to complete the
integration of certain “delicate” stiff problems. As an example, let us consider

2

the reaction of Robertson [15, p. 144] integrated along the interval [0, 1011]. For
this problem, if the second component y2 becomes negative at some point tn,
then the corresponding integral curve tends to infinity when t →∞ (see [15, p.
144]) whereas the exact solution for t →∞ is (0, 0, 1)T . If we integrate it with
RADAU5, with the standard “default” options, and with absolute and relative
tolerances greater or equal to 10−3, the integration is not completed, and the
code returns an error code “IDID=-3” that means “STEP SIZE BECOMES
TOO SMALL”. It can be argued that this problem must be solved with a
lower relative error tolerance. However, if we integrate the simple test problem
y′ = −(y − 1)2, y(0) = 2, t ∈ [0, 1011], the code again stops the integration
with the same error code, but in this case this happens for error tolerances
greater than 10−9 (no change is observed if we specify different absolute and
relative error tolerances because the solution remains close to 1).

These two problems can be solved robustly with RADAU5 if, instead of the
default values, some special parameters are specified to the code. Thus, if you
specify for the coefficient c of the stopping control a much smaller value, the
integration is completed. For example, the second problem can be integrated
with error tolerance 10−6 if c ≤ 10−6. In this case the code takes 122 accepted
steps and the iterative scheme fails to converge at 33 steps, requiring a total
of 479 solutions or pairs of triangular linear systems. The relative efficiency
decreases for higher error tolerances. For example for tolerance 10−4, the code
integrates the problem with c ≤ 10−7 and takes 82 accepted steps, 51 rejected
steps, needing 405 solutions of pairs of systems.

An other way to integrate the problem consists in selecting, instead of the
Lagrange initial values, the approximation yn+1 as starting value (we can keep
c = 0.03). In this case the integration is completed much more efficiently and
thus, for Tol= 10−6 the code takes 98 steps with no rejected steps, needing 203
linear system solutions, while for Tol= 10−4, it takes 45 steps, no rejections
and 76 triangular system solutions.

As we have seen in these experiences, the starting algorithm chosen can be
critical in the performance of a code and algorithms with high order are not
always preferable to other with lower order. In order to gain some additional
information about the influence of the starting algorithm on the behaviour of
the integration code, we have developed a very simple variable step-size code,
based on the RadauIIA formula of order 5, not intended to compete with stan-
dard existing codes, but just to study the performance when different initial
guesses are used. We have used local extrapolation as method for estimat-
ing the local error, halving the stepsize when a step is rejected. The stage
equations are solved by a modified Newton scheme, which is stopped when
the Euclidean norm of the increment is smaller or equal to Tol/100. If the
increment at one iteration does not decrease by at least a factor of 0.9, or well
the scheme does not converge in 10 iterations, we reject the step, halving the

3

stepsize. Also, the Jacobian matrix is evaluated, and the corresponding matrix
factorized, every two steps (since we use extrapolation as error estimation, the
always take two consecutive steps with the same stepsize).

In the code we have considered the possibility of using, for i = 1, 2, 3 the
following starting algorithms:

(1) L(3)
i = p3(tn+1 + cihn+1), with p3(t) as in (1.4).

(2) L(2)
i = p2(tn+1 + cihn+1), being p2(t) the interpolation polynomial on the

three points {(tn + cjhn, Yj,n), 1 ≤ j ≤ 3}.
(3) L(1)

i = p1(tn+1 + cihn+1), being p1(t) the interpolation polynomial on the
two points {(tn + cjhn, Yj,n), 2 ≤ j ≤ 3}.

(4) L(0)
i = Y3,n = yn+1.

As we will see later in section 3, L(k)
i has order k, that is,

L(k)
i − Yi,n+1 = O(hk+1

n) (hn → 0+), 1 ≤ i ≤ 3, 0 ≤ k ≤ 3.

Table 1.1 displays the results obtained when the Robertson problem is in-
tegrated, for tolerances TOL = 10−1, 10−2, . . . , 10−8, when every starting
algorithm is used (“*” means that the code was unable to complete the inte-
gration). In all cases we have taken as initial stepsize h0 = 10−3.

In the Table TOL means the error tolerance considered (we have used a mixed
option with the same relative and absolute error tolerances), SA denotes the
starting algorithm taken, GE the global error at the end-point, NSS is the
number of successful steps, NR-SN is the number of rejected steps by a fail
in the iteration scheme, NLU the number of LU factorisations, NSOL is the
number of (couple of) triangular systems solved, NFN represents the number
of evaluations of the derivative function and NITER stands for the average
of iterations per integration step (the first entry corresponds to the first step,
the second one to the second step and the third one corresponds to the double
step, recall that we are using the extrapolation technique to estimate the local
error). Since in all the cases the error estimator was smaller than the error
tolerance, there were no rejections by this cause and we have not included this
number.

Regarding the Lagrange starting algorithms above described, in Table 1.1 we
can see that the code was able to conclude the integration for all tolerances
only when the starting algorithm denoted by L(0)

i was used. Further, L(1)
i is

more robust than L(2)
i , and this one is more robust than L(3)

i . Observe that

although L(3)
i permitted the code to accomplish the integration for TOL =

10−3, the numerical solution obtained was completely wrong. We must mention

4

Table 1.1
Reaction of Robertson

TOL SA GE NSS NR-SN NLU NSOL NFN NITER

10−1 L(0)
i 0.34 · 10−8 92 0 184 412 616 1.7,1.8,1.0

L(1)
i * * * * * * *

L(2)
i * * * * * * *

L(3)
i * * * * * * *

V-code 0.32 · 10−8 114 9 234 430 643 1.3,1.3,1.0

10−2 L(0)
i 0.34 · 10−8 92 0 184 514 769 2.1,2.3,1.2

L(1)
i 0.28 · 10−8 104 2 210 520 778 1.8,1.9,1.2

L(2)
i * * * * * * *

L(3)
i * * * * * * *

V-code 0.32 · 10−8 108 7 228 516 772 1.6,1.7,1.2

10−3 L(0)
i 0.34 · 10−8 98 2 196 682 1019 2.6,2.8,1.6

L(1)
i 0.28 · 10−8 98 1 196 620 926 2.3,2.4,1.6

L(2)
i 0.18 · 10−8 98 2 196 586 875 2.1,2.2,1.6

L(3)
i 0.47 · 108 928 336 1932 5296 7940 2.0,1.2,1.6

V-code 0.32 · 10−8 98 2 196 594 887 2.2,2.2,1.6

10−4 L(0)
i 0.32 · 10−8 98 2 196 856 1283 3.0,3.5,2.1

L(1)
i 0.27 · 10−8 98 1 196 792 1187 2.9,2.9,2.1

L(2)
i 0.17 · 10−8 98 2 196 760 1139 2.7,2.8,2.1

L(3)
i 0.19 · 10−8 104 3 210 748 1121 2.5,2.5,2.1

V-code 0.30 · 10−8 98 2 196 740 1109 2.6,2.8,2.1

10−6 L(0)
i 0.12 · 10−8 106 1 214 1308 1961 4.1,4.8,3.3

L(1)
i 0.78 · 10−9 106 1 214 1246 1868 4.0,4.3,3.3

L(2)
i 0.61 · 10−9 106 1 214 1186 1778 3.8,4.0,3.3

L(3)
i 0.99 · 10−9 106 1 214 1138 1706 3.6,3.7,3.3

V-code 0.99 · 10−9 106 1 214 1180 1769 3.7,4.0,3.3

10−8 L(0)
i 0.82 · 10−11 142 3 286 2152 3228 5.0,5.8,4.2

L(1)
i 0.61 · 10−11 142 2 286 2064 3096 4.9,5.3,4.2

L(2)
i 0.87 · 10−11 142 3 286 1948 2922 4.4,4.9,4.2

L(3)
i 0.55 · 10−11 142 3 286 1844 2766 4.1,4.5,4.2

V-code 0.65 · 10−11 142 3 286 1892 2838 4.2,4.7,4.2

5

−100 −80 −60 −40 −20 0

−5

0

5

10

15

20

L
(3)
3

L
(2)
3

z
−100 −80 −60 −40 −20 0

−0.25

−0.2

−0.15

−0.1

−0.05

0

L
(0)
3

z

(a) (b)

Fig. 1.1. Amplifying factors R3(z)−R0
3(z) of the starting algorithms L(0)

3 , L(1)
3 , L(2)

3

and L(3)
3 .

that a similar behaviour is observed if we integrate the problem taking the
smaller integration interval [0, 40].

It can be surprising that starting algorithms perform worse when we increase
their order. An explanation of such a behaviour might be given by considering
the Prothero & Robinson test problem [19]

y′ = λ(y − φ(t)) + φ′(t), Re(λ) ≤ 0. (1.5)

Since the error of a starting algorithm Y 0
i,n+1 of order p when this problem is

integrated can be expressed in the form (see [12])

Yi,n+1 − Y 0
i,n+1 =

(
Ri(hnλ)−R0

i (hnλ)
)
(yn − φ(tn)) +O(hp+1

n), (1.6)

being Ri(z) = Yi,n+1/yn and R0
i (z) = Y 0

i,n+1/yn the amplifying functions of the
true solution Yi,n+1 and the starting algorithm respectively, the error is affected
by a term O(hp+1

n) independent of the stiffness, but also by a term that can be
interpreted as a propagation of the previous error. Then, if a starting algorithm
has a high order but it has poor stability properties, that is, its amplifying
function is not close to the amplifying function of the true solution, the errors
can be larger than expected. This phenomenon can be particularly present for
large tolerances where the order theory, based on asymptotic arguments can
lose the validity.

In Figure 1 (a) we have plotted the functions R3(z) − R0
3(z) for the third

stage of the starting algorithms L(0)
i to L(3)

i , with z varying on the negative
real axis and for the particular value of the stepsize ratio rn = 1. In figure
1 (b) we have plotted the same functions but removing the function for L(3)

i ,
to see more clearly the relative values of the functions. As it can be seen, the
amplifying factor increases as the order of the starting algorithm increases (for

6

example for z = −50 L(3)
i amplifies the error by a factor of about 20 while

L(0)
i reduces the error by factor of about −0.05). Therefore, it is not surprising

that for large tolerances, where the errors are allowed to be large, the stability
can be determinant. Note that the internal stages of the Runge-Kutta method
are not exactly calculated at each step, and the propagation of accumulated
errors (iteration errors, round-off errors,etc) through the starting algorithm
may seriously affect to the accuracy of the numerical solution obtained by the
iteration process.

These problems are not the only examples where low order starting algorithms
work much better than higher order ones . Thus, for problem E5 (see [15, p.
145]) and for the Ring modulator problem [17] similar results are encountered
when integrating these problems with large tolerances.

We must remark that this stability analysis, based on a linear model does
not provide a rigourous explanation of the behaviour of the code with these
differential problems, that are nonlinear (further investigation in this line is
being carried out). However, it can serve as a first approximation for a better
treatment of the problem.

On the other hand, for low tolerances all the above starting algorithms work
properly, and it can be appreciated in table 1.1 that the higher order ones
perform quite better than those of a lower order. This also happens on most
stiff problems proposed as tests in [9,15,17].

In [14] a stabilisation of the highest order starting algorithms considered in
[12] was carried out, trying to obtain starting algorithms with order as high as
possible but maintaining good stability properties. However, the algorithms
developed there, even though are more efficient than L(3)

i for the Radau IIA
formula of order 5, are not able to make the integration code robust enough
to integrate problems like that of Robertson for large error tolerances. Unfor-
tunately, in order to get better stability properties (with minimum additional
cost) we need to decrease the order, getting the better stability for the initial
guess of order 0.

After these results and from previous investigations [18], we have concluded
that, instead of using a predetermined fixed starting algorithm it would be
more efficient using a family of starting algorithms with different orders and
stability properties. The key point is to develop a technique than selects, at
each step, the most adequate starting algorithm, that is, the one providing
the smallest error.

In this paper we will focus first in developing a simple family of starting algo-
rithms with increasing orders, but of course, with decreasing stability proper-
ties so that we can select at each step the one that, having enough stability,

7

has the highest order possible. We will consider orders from 0 to s + 1 (in
this last case we need to use the information of the two integration steps) for
an s–stage Runge–Kutta method. Then, we will present a technique for the
automatic selection of the most adequate first iterant.

In section 2 some order results (non–stiff order, order for the Prothero &
Robinson test equation and stiff order) for starting algorithms based on the
information of the two last integration steps. In section 3, for s–stages col-
location Runge–Kutta methods, we give a family of starting algorithms with
orders ranging from 0 to s + 1, based on Lagrange interpolation, that can be
expressed in a simple way in terms of divided differences. The one of order
s+1, with better stability properties than the one proposed in [12], is defined
using the information in the last two integration steps and can also be com-
puted using divided differences. Finally, in section 4, we present an strategy
for the selection of the starting algorithm to be used at each particular step.
It is based on the construction, for each first iterant, of an associated error
estimator. In this section we also present some numerical experiments testing
the performance of a code using the strategy presented, showing that it make
the codes more robust and efficient.

2 Order results for two–step starting algorithms

In this section we introduce the order theory for starting algorithms based
on the two last integration steps. Thus, we will assume that a first step of
the Runge-Kutta method, with non–singular coefficient matrix, given by the
equations (1.2)-(1.3) together with a second step, from tn+1 → tn+2 = tn+1 +
hn+1, given by the equations

Yi,n+1 = yn+1 + hn+1

s∑

j=1

aijf(tn+1 + cjhn+1, Yj,n+1) (i = 1, . . . , s), (2.1)

and

yn+2 = ωyn+1 +
s∑

j=1

wjYj,n+1, (2.2)

have been carried out.

In order to start the iterative process for the new integration step, tn+2 →
tn+3 = tn+2 + hn+2, we consider starting algorithms that can be written as,

Y 0
i,n+2 =

s∑

j=1

u
[n]
ij Yj,n +

s∑

j=1

u
[n+1]
ij Yj,n+1, 1 ≤ i ≤ s, (2.3)

8

where the scalars

u
[n+l]
ij := u

[n+l]
ij (rn, rn+1, A, b), l = 0, 1, 1 ≤ i, j ≤ s,

may depend on the coefficients of the Runge-Kutta method, and on rn, rn+1

(here and henceforth rj = hj+1/hj, j = 0, 1, . . .). Moreover, u
[n+l]
ij must be

uniformly bounded when

0 < rn, rn+1 ≤ r∗, r∗ > 1. (2.4)

Note that we have not used the values of the advancing solutions, yn, yn+1.
This is motivated by the propagation of initial errors on the simple test

y′ = λy, y(tn) = yn, Re(λ) ≤ 0. (2.5)

For this problem, the internal stages Yi,n+2 at the step tn+2 → tn+3, are given
by

Yi,n+2 = R(λhn)R(λhn+1)Ri(λhn+2)yn, (i = 1, . . . , s), (2.6)

where R(z) = 1+ zbT (I − zA)−111s is the stability function of the RK method
and Ri(z) = eT

i,s(I − zA)−111s, (i = 1, . . . , s). Here, as usual 11k = (1, . . . , 1) ∈
Rk and ei,k denotes the i-vector of the canonical base of Rk.

On the other hand, the starting algorithm (2.3) applied to (2.5) gives,

Y 0
i,n+2 =




s∑

j=1

u
[n]
ij Rj(λhn) + R(λhn)

s∑

j=1

u
[n+1]
ij Rj(λhn+1)


 yn, 1 ≤ i ≤ s.

(2.7)
Hence, by assuming that the Runge-Kutta matrix A is nonsingular, we have

lim
Re(λ)→−∞

Yi,n+2 = 0 = lim
Re(λ)→−∞

Y 0
i,n+2, (i = 1, . . . , s) (2.8)

independently on the values of hn, hn+1, tn and yn. This means that the starting
algorithm cushions the very stiff components, as the underlying Runge-Kutta
method does, and this behaviour can not be guaranteed, for non–stiffly accu-
rate methods, if the starting algorithm uses the values yn, yn+1. This property
can be immediately generalised for stiff linear systems.

In order to develop the order theory for the starting algorithms, we can con-
sider the internal stages Yi,n+2 as obtained from the application of a Runge-

Kutta method with coefficient matrix Â, and whose Butcher tableau is given

9

by

ĉ Â

Yi,n+2 eT
2s+i,3sÂ

=

c A 0 0

11s + rnc 11sb
T rnA 0

(1 + rn)11s + rn+1c 11sb
T rn11sb

T rnrn+1A

Yi,n+2 bT rnb
T rnrn+1e

T
i,sA

. (2.9)

Henceforth, h = hn will denote the first step-size of the three consecutive steps
to be considered {hn, hn+1, hn+2}, and h̄ = hn + hn+1 + hn+2. Of course, we
assume that A11s = c.

We will denote by τ ≥ 1 the stage order of the underlying Runge-Kutta (A, b),
that is the largest integer such that

bT cj−1 = 1/j and Acj−1 = cj/j, j = 1, . . . , τ, (2.10)

where the powers of a vector are defined as usual taking powers on each
component. It is not difficult to prove that (2.10) is equivalent to

Âĉj−1 = ĉj/j, j = 1, . . . , τ. (2.11)

Following the approach in [16], we will say that the starting algorithm (2.3)
attains non-stiff order q if

‖ Yi,n+2 − Y 0
i,n+2 ‖≤ Chq+1, 1 ≤ i ≤ s, (2.12)

for all h ∈ (0, h∗], 0 < rn, rn+1 ≤ r∗, r∗ > 1 when the elementary differentials
of the successive derivatives of f (up to order q) are uniformly bounded in
some ball around the point (tn, yn).

Following the approach of [12] we will say that the starting algorithm possesses
stiff order q if (2.12) holds, independently of the stiffness, provided that the
differential system is dissipative (with respect to the norm associated to an
inner product on Rm) [7, Chap. I], and the successive derivatives (until order
q+1) of the local exact solution y(t; tn, yn) considered, are uniformly bounded
on some interval [tn, tn + δ] with δ > 0.

If the starting algorithm reaches stiff order q for the Prothero and Robinson
test (1.5), then we will say that it possesses P-R order q. Moreover, since the
P-R order when Re(λ) → −∞ will be relevant for the very stiff components of
linear differential systems, we will denote the order in this particular situation
by means of P-R(∞).

Note that although these concepts of order might appear much as the same,

10

they are quite different. Thus, if we consider the 1-stage Runge-Kutta Gauss,

yn+1 = yn + hnf(tn + hn/2, Y1,n),

Y1,n = yn + hn/2 f(tn + hn/2, Y1,n), n = 0, 1, . . .

and we take the following starting algorithm (which does not belong to the
class previously considered in (2.3), but it is a very simple starting algorithm)

Y 0
1,n+2 = yn+2 +

hn+2

2
f(tn+2, yn+2), (2.13)

it is not difficult to prove that it has non-stiff order 1. However, for the
Prothero & Robinson test with Φ(t) = t2 and yn = Φ(tn), we have that
limλ→−∞ |Y 0

1,n+2| = ∞, if rn 6= 1, whereas Y1,n+2 = φ(tn+2 + hn+2/2) =
(tn+2 + hn+2/2)2. Therefore P-R(∞) is not defined (it cannot achieve even
order 0).

In order to simplify the exposition we use throughout the rest of the paper
the following notation. Given the vectors

Zi,n ∈ Rm, 1 ≤ i ≤ s, n = 0, 1 . . . ,

we will denote

Zn :=




Z1,n

...

Zs,n



∈ Rsm, f(Zn) :=




f(tn + c1hn, Z1,n)
...

f(tn + cshn, Zs,n)



∈ Rsm,

Z̃n :=




Zn

Zn+1

Zn+2



∈ R3sm, f(Z̃n) :=




f(Zn)

f(Zn+1)

f(Zn+2)



∈ R3sm.

Although we are using f() to represent several kind of functions, it will be
clear from the context which mapping must be applied.

According to our notation, the starting algorithm (2.3) can be written as

Y 0
n+2 = (U [n] ⊗ Im)Yn + (U [n+1] ⊗ Im)Yn+1, (2.14)

where the (s× s) matrices U [n+l] are defined by

U [n+l] := (u
[n+l]
ij) ∈ Rs,s, l = 0, 1,

11

and

Y 0
n+2 :=




Y 0
1,n+2

...

Y 0
s,n+2




.

In order to deduce the order conditions we will use the exact local solution of
the differential system, x(t) = y(t; tn, yn), and we will denote

Xi,n+j := x(tn+j + cihn+j), 1 ≤ i ≤ s, j = 0, 1, 2.

The internal stages of the RK method (A, b) on three consecutive steps (h =
hn, hn+1, hn+2) fulfill the algebraic system,

Ỹn = 113s ⊗ yn + h(Â⊗ Im)f(Ỹn), (2.15)

and the local exact solution (Im denotes the identity matrix of order m) sat-
isfies

X̃n = 113s ⊗ yn + h(Â⊗ Im)f(X̃n) + ∆, (2.16)

where

∆ =
∑

k≥τ+1

hk

k!
(γ̂k ⊗ Im)x(k)(tn), γ̂k := (ĉk − kÂĉk−1). (2.17)

Now, by subtracting (2.16) from (2.15) it follows that

Ỹn − X̃n = h(Â⊗ Im)Jn(Ỹn − X̃n)−∆, (2.18)

where

Jn = diag((Ji,n)i=1,...,s, (Ji,n+1)i=1,...,s, (Ji,n+2)i=1,...,s),

Ji,n+l :=
∫ 1

0

∂f

∂y
(tn+l + cihn+l, Xi,n+l + θ(Yi,n+l −Xi,n+l))dθ.

(2.19)

By assuming that (I3sm − h(Â⊗ Im)Jn) is nonsingular, it follows from (2.18)
that

Ỹn = X̃n −Υ, Υ = (I3sm − h(Â⊗ Im)Jn)−1∆. (2.20)

And from here,

Yn+l = Xn+l − (eT
l+1,3 ⊗ Ism)Υ, l = 0, 1, 2. (2.21)

By inserting this equation into (2.14), it follows after some simple calculations
that

Yn+2 − Y 0
n+2 = Xn+2 − (U [n] ⊗ Im)Xn − (U [n+1] ⊗ Im)Xn+1

+((U [n], U [n+1],−Is)⊗ Im)Υ,
(2.22)

12

where (U [n], U [n+1],−Is) denotes the s × 3s matrix whose first s columns are
those of U [n], the following s columns are those of U [n+1] and the last s columns
those of −Is. Now, we can rewrite the last equation in the following compact
form

Yn+2 − Y 0
n+2 = ((U [n], U [n+1],−Is)⊗ Im)(−X̃n + Υ). (2.23)

On the other hand, it is straightforward to see that

X̃n =
∑

l≥0

hl

l!
(ĉl ⊗ Im)x(l)(tn). (2.24)

Equations (2.23) and (2.24) will let us deduce the order conditions.

2.1 Non-stiff order

For non-stiff problems we have that,

(I3sm − h(Â⊗ Im)Jn)−1 = I3sm + h(Â⊗ Im)Jn +O(h2)

= I3sm + h(Â⊗ Jn) +O(h2),

(2.25)

where Jn = ∂f
∂y

(tn, yn). Hence, from (2.20) and (2.17) it follows that,

Υ =
hτ+1

(τ + 1)!
(γ̂τ+1 ⊗ Im)x(τ+1)(tn) +

hτ+2

(τ + 2)!
((γ̂τ+2 ⊗ Im)x(τ+2)(tn)

+(τ + 2)(Âγ̂τ+1 ⊗ Im)Jnx
(τ+1)(tn)) +O(hτ+3).

(2.26)

From (2.17) it is clear that

−ĉk + γ̂k = −kÂĉk−1, k = 1, 2, . . .

Thus from (2.26) and (2.24) we have

−X̃n + Υ = −
τ∑

l=0

hl

l!
(ĉl ⊗ Im)x(l)(tn)

−hτ+1

τ !
(Âĉτ ⊗ Im)x(τ+1)(tn)− hτ+2

(τ + 1)!
(Âĉτ+1 ⊗ Im)x(τ+2)(tn)

− hτ+2

(τ + 1)!
(((τ + 1)Â2ĉτ − Âĉτ+1)⊗ Im)Jnx(τ+1)(tn) +O(hτ+3).

(2.27)
Now we are in position of giving the following theorem, which directly follows
from (2.27) and (2.23).

13

Theorem 1 (a) The starting algorithm reaches non-stiff order q ≤ τ iff

(U [n], U [n+1],−Is)ĉ
l = 0, l = 0, 1, . . . , q.

In such a case the error satisfies

Yn+2 − Y 0
n+2 = −hq+1

q!
((U [n], U [n+1],−Is)Âĉq ⊗ Im)x(q+1)(tn) +O(hq+2).

(b) The starting algorithm reaches non-stiff order τ + 1 iff it reaches non-stiff
order τ and

(U [n], U [n+1],−Is)Âĉτ = 0.

In such a case the error satisfies

Yn+2 − Y 0
n+2 = − hτ+2

(τ + 1)!
((U [n], U [n+1],−Is)⊗ Im)((Âĉτ+1 ⊗ Im)x(τ+2)(tn)

+(((τ + 1)Â2ĉτ − Âĉτ+1)⊗ Im)Jnx(τ+1)(tn)) +O(hτ+3).

(c) The starting algorithm reaches non-stiff order τ + 2 iff it reaches non-stiff
order τ + 1 and

(U [n], U [n+1],−Is)Âĉτ+1 = 0, (U [n], U [n+1],−Is)Â
2ĉτ = 0.

2.2 The Prothero and Robinson order

Let us consider now the order of the starting algorithms on the Prothero and
Robinson model (1.5) being λ any complex in the left half-plane. In this case,
since m = 1 and

(I3sm − h(Â⊗ Im)Jn)−1 = (I3s − zÂ)−1, z = λh,

from (2.20) and (2.17) we get,

Υ = (I3s − zÂ)−1
∑

k≥τ+1

hk

k!
γ̂kx

(k)(tn). (2.28)

In order to analyse the order for this test equation, we must ensure (by defi-
nition of stiff order) that the successive derivatives of the exact local solution
x(t) are uniformly bounded independently of λ. Then we must consider the
case yn = φ(tn), i.e.,

x(t) = φ(t).

14

From (2.28) we have

Υ = (I3s − zÂ)−1
∑

k≥τ+1

hk

k!
γ̂kφ

(k)(tn). (2.29)

and the expression (2.22) becomes

Yn+2 − Y 0
n+2 = (U [n], U [n+1],−Is)


−∑

l≥0

hl

l!
ĉlφ(l)(tn)

+(I3s − zÂ)−1
∑

k≥τ+1

hk

k!
γ̂kφ

(k)(tn)


 .

(2.30)

From here it is straightforward to prove the following theorem when

sup
Re(z)≤0

‖ (I3s − zÂ)−1 ‖2< ∞.

Theorem 2 (a) Let us assume that

sup
Re(z)≤0

‖ (Is − zA)−1 ‖2< ∞, and sup
Re(z)≤0

‖ zbT (Is − zA)−1 ‖2< ∞.

Then the starting algorithm reaches P-R order q ≤ τ iff

(U [n], U [n+1],−Is)ĉ
l = 0, l = 0, 1, . . . , q.

(b) If A is a nonsingular matrix, then the starting algorithm reaches P-R(∞)
order q > 0 iff

(U [n], U [n+1],−Is)ĉ
l = 0, l = 0, 1, . . . , q.

In this case its error is given by

Yn+2 − Y 0
n+2 = −(U [n], U [n+1],−Is)

∑

l≥q+1

hl

l!
ĉlφ(l)(tn).

Note that for most implicit Runge–Kutta methods of practical interest the
P–R order τ +1 can not be achieved because of the z–dependence of the hτ+1

term.

15

2.3 The stiff order

Let us consider dissipative problems [7, Chap.I], i.e., for some inner product
〈·, ·〉 on Rm the derivative function f satisfies

〈y − z, f(t, y)− f(t, z)〉 ≤ 0, ∀t, y, z.

If the underlying Runge-Kutta (A, b) is diagonally stable (i.e., there exists a
positive definite diagonal matrix D such that DA + AT D is positive definite)
and

0 ≤ cj ≤ 1, 1 ≤ j ≤ s, (2.31)

it is not difficult to prove that (use for instance [15, Chap. IV.14, theor. 14.3]),
for l = 0, 1, 2,

‖ Yi,n+l −Xi,n+l ‖≤ Cτ+1h
τ+1 max

0≤θ≤1
‖ x(τ+1)(tn + θh̄) ‖, 1 ≤ i ≤ s, (2.32)

where the constant Cτ+1 depends only on the coefficients of the Runge-Kutta
method and on r∗. If the knots do not fulfill (2.31) we can still prove (2.32),
but with θ ranging on another interval.

Assuming that the coefficients u
[n+l]
ij are uniformly bounded when 0 < rn, rn+1 ≤

r∗, we have that

Yn+2 − Y 0
n+2 = Xn+2 − (U [n] ⊗ Im)Xn − (U [n+1] ⊗ Im)Xn+1 +O(h)τ+1. (2.33)

This implies that the conditions for stiff order q ≤ τ , are the same as for non-
stiff order q ≤ τ , which are collected in theorem 1 (a). Moreover the stiff order
τ +1 cannot be reached, since it cannot be even achieved on the Prothero and
Robinson model.

One might wonder whether the stiff order of the starting algorithms is relevant
for stiff problems, since in the analysis of the stiff order we have assumed that
the exact local solution x(t) = y(t; tn, yn) must possess uniformly bounded
derivatives, and this is not the case when considering the whole class of dissi-
pative problems and we advance in the integration of the problem with some
Runge-Kutta method. However, the following theorem assures that the stiff
order will be relevant at least for algebraically stable Runge-Kutta methods.

Theorem 3 Let us assume that the initial value problem (1.1) is dissipative
and its exact solution y(t) = y(t; 0, y0) possesses bounded derivatives until
order τ + 1, i.e.,

‖ y(l)(t) ‖≤ Ml, l = 1, 2 . . . , τ + 1, ∀t ∈ [0, T].

Let us also assume that the underlying Runge-Kutta is diagonally stable with
stage order τ , and that the starting algorithm (2.3) possesses stiff order q ≤ τ .

16

Then,

‖ Yi,n+2 − Y 0
i,n+2 ‖≤ K1 ‖ εn ‖ +K2(hn)q+1, 1 ≤ i ≤ s,

where the constants Kj (j = 1, 2) only depend on the coefficients of the Runge-
Kutta (A, b), on the constant Mq+1 and on r∗. Here, εn = y(tn)−yn, represents
the global error of the numerical solution given by the Runge-Kutta method
after n consecutive steps.

PROOF. Let us denote by

Yi,n+l{y(tn)}, 1 ≤ i ≤ s, l = 0, 1, 2,

the internal Runge-Kutta stages when the Runge-Kutta (A, b) is applied from
the point (tn, y(tn)) and after giving three consecutive steps of sizes hn, hn+1

and hn+2 respectively, and let us also denote by

Y 0
i,n+2{y(tn)}, 1 ≤ i ≤ s,

the resulting starting algorithm. The error of the starting algorithm can be
written in the form

Yi,n+2 − Y 0
i,n+2 = (Yi,n+2 − Yi,n+2{y(tn)})

+(Yi,n+2{y(tn)} − Y 0
i,n+2{y(tn)})

+(Y 0
i,n+2{y(tn)} − Y 0

i,n+2).

(2.34)

Now, from the diagonal stability of the Runge-Kutta method (see e.g. [15,
Chap. IV.14, theor. 14.3]) the first and the third addendum on the right–hand
side of (2.34) are both bounded by K1 ‖ εn ‖ and the bound for the second
addendum follows immediately from the stiff order q of the starting algorithm.
¤

Note that for algebraically stable Runge-Kutta methods the global error εn

can be bounded in the form

‖ εn ‖≤ K3(max
0≤k≤n−1

hk)
τ ,

where K3 is a constant that only depends on Mτ+1 and on the Runge-Kutta
coefficients.

17

3 Starting algorithms based on divided differences for collocation
Runge-Kutta methods

In the rest of the paper we will assume that the nodes of the collocation
Runge-Kutta method fulfill

0 < c1 < c2 < . . . < cs ≤ 1. (3.1)

Observe that in the case we are considering, we can replace the stage order τ
by s in order to apply the preceding theory. Besides, (3.1) implies

0 < ĉ1 < ĉ2 < . . . < ĉ3s. (3.2)

We will denote by Ln[ĉj1 , . . . , ĉjq](θ), the Lagrange interpolating polynomial
satisfying

Ln[ĉj1 , . . . , ĉjq](ĉjl
) = Ỹjl,n, 1 ≤ l ≤ q,

where Ỹk,n denotes the k-component of the vector Ỹn.

Among the starting algorithms of type (2.3) we will mainly consider here those
that can be written in the form

Y 0
i,n+2 = Ln[ĉj1 , . . . , ĉjq](ĉ2s+i), 1 ≤ i ≤ s. (3.3)

because they can be easily implemented and they provide adequate order and
stability properties.

Remark 4 If we define recursively, as usual, the divided differences for the
internal stages of the composed Runge-Kutta method by

[Yj1] := Ỹj1,n,

[Yj1 , . . . , Yjl
] :=

1

ĉjl
− ĉj1

(
[Yj2 , . . . , Yjl

]− [Yj1 , . . . , Yjl−1
]
)
, l = 2, . . . , 3s,

(3.4)
we can rewrite the Lagrange interpolating polynomial above as

Ln[ĉj1 , . . . , ĉjq](θ) = [Yj1] +
q∑

l=2

[Yj1 , . . . , Yjl
](θ − ĉj1) · · · (θ − ĉjl−1

). (3.5)

On the other hand, if we define the corresponding divided differences for the
local exact solution x(t),

[Xj1] := X̃j1,n,

[Xj1 , . . . , Xjl
] :=

1

ĉjl
− ĉj1

(
[Xj2 , . . . , Xjl

]− [Xj1 , . . . , Xjl−1
]
)
, l = 2, . . . , 3s,

18

then from equation (2.32) we get

[Xjl
]− [Yjl

] = O(hs+1),

which implies

[Yj1 , . . . , Yjq] = [Xj1 +O(hs+1), . . . , Xjq +O(hs+1)] = [Xj1 , . . . , Xjq]+O(hs+1).

Moreover according to some well known expression for the q − 1 divided dif-
ference in terms of the q − 1 derivatives, we have that

[Xj1 , . . . , Xjq] =
hq−1

(q − 1)!
x(q−1)(tn + θqh), 0 < θq < rnrn+1.

Consequently,

[Yj1 , . . . , Yjq] = O(hq−1) +O(hs+1), q ≥ 2. (3.6)

The order of the starting algorithm (3.3) is stated in the following theorem.

Theorem 5 (a) If 1 ≤ q ≤ s + 1 and {j1, . . . , jq} ⊆ {1, . . . , 2s}, then the
starting algorithm given by (3.3) has stiff and non-stiff order q − 1.
(b) If 1 ≤ q ≤ 2s and {j1, . . . , jq} ⊆ {1, . . . , 2s}, then the starting algorithm
(3.3) reaches P-R(∞) order q − 1.

PROOF. (a) For the stiff and non-stiff cases we have

Yi,n+l −Xi,n+l = O(hs+1), 1 ≤ i ≤ s, l = 0, 1, 2, (3.7)

where the term O(hs+1) is not affected by the stiffness if we assume that the
derivatives of x(t) until order s + 1 are uniformly bounded.

From (2.23) and (2.27) for the non-stiff case and from (2.32) for the stiff case,
it follows that

Yn+2 − Y 0
n+2 = Xn+2 − (U [n] ⊗ Im)Xn − (U [n+1] ⊗ Im)Xn+1 +O(hs+1). (3.8)

Now, from the interpolation conditions

Xn+2 − (U [n] ⊗ Im)Xn − (U [n+1] ⊗ Im)Xn+1 = O(hq,)

and inserting this expression in (3.8) we get

Yn+2 − Y 0
n+2 = O(hq) +O(hs+1) = O(hq),

which proves the first part of the theorem.

19

(b) By considering the Prothero and Robinson model (1.5) and making Re(λ) →
−∞, it follows from (2.20)-(2.21) that

Yi,n+l = φ(tn+l + cihn+l), 1 ≤ i ≤ s, l = 0, 1, 2.

From here, by applying the well known polynomial interpolation error formula,

Yi,n+2−Ln[ĉj1 , . . . , ĉjq](ĉ2s+i) =
hq

q!
Πq

k=1(ĉ2s+i− ĉjk
) ·φ(q)(tn + θih̄), 1 ≤ i ≤ s

for some θi ∈ (0, 1). ¤

From the order theory in section 2, it is clear that we can not obtain starting
algorithms with P–R order higher than s, and therefore with stiff order s + 1
or higher. By means of the Lagrange interpolation we can get P–R(∞) order
s+1 or greater (for example Ln[ĉ2s, . . . , ĉs−1](ĉ2s+i) has P–R(∞) order s+1).
The goal now is to get starting algorithms with stiff order s and non stiff order
greater or equal than s + 1 (we will assume s ≥ 2).

In [12] an algorithm with non–stiff order s + 1 that uses the evaluation of
the derivative function f(tn+1, yn+1) is studied. This algorithm has the disad-
vantage that its amplifying function is not bounded when z goes to infinity
and the authors do not recommend its usage if the Runge-Kutta method is
not stiffly accurate. Here we present another algorithm with non–stiff order
s+1 for which the amplifying function is bounded, and that makes use of the
internal stages Ỹs−1,n, Ỹs,n, . . . , Ỹ2s,n.

From theorem 1, part (b), such an starting algorithm must satisfy

(U [n], U [n+1],−Is)ĉ
j = 0, j = 0, . . . , s

(U [n], U [n+1],−Is)Âĉs = 0.
(3.9)

and in order to assure its existence we must demand

ρ(rn) := det M 6= 0, M =




1 ĉs−1 · · · (ĉs−1)
s v̂s−1

...
...

...

1 ĉ2s · · · (ĉ2s)
s v̂2s




, (3.10)

where v̂ = Âĉs. Observe that ρ(rn) is a polynomial on rn with degree s(s+3)/2
at most. It would be convenient that the roots of ρ are out of the interval (0, r∗].

The following theorem give us such an starting algorithm by means of the
divided differences.

20

Theorem 6 If ρ(rn) 6= 0, then there exist constants δi = δi(rn, rn+1), 1 ≤ i ≤
s such that the starting algorithm

Y 0
i,n+2 = Ln[ĉ2s, . . . , ĉs](ĉ2s+i) + δi[Y2s, Y2s−1, . . . , Ys−1], 1 ≤ i ≤ s,

reaches non-stiff order s + 1 and stiff order s. Moreover, such constants are
unique.

PROOF. Since this algorithm only uses the stages Ỹj,n ≡ [Yj] with s − 1 ≤
j ≤ 2s, then u

[n]
ij = 0, 1 ≤ i ≤ s, 1 ≤ j ≤ s− 2 and it can be written in terms

of the vector Ỹn as,

Y 0
i,n+2 =

s∑

j=s−1

u
[n]
ij Ỹj,n +

s∑

j=1

u
[n+1]
ij Ỹj,n, 1 ≤ i ≤ s.

Now, using the divided differences defined by (3.4) we can put,

Y 0
i,n+2 = βi0[Y2s] +

s+1∑

j=1

βij[Y2s, . . . , Y2s−j], βij = βij(rn, rn+1), 1 ≤ i ≤ s.

(3.11)
On the other hand from (3.5) we have that

Y 0
i,n+2 − Ln[ĉ2s, . . . , ĉs](ĉ2s+i) = (τi0 − βi0)[Y2s] +

s+1∑

j=1

(τij − βij)[Y2s, . . . , Y2s−j]

where
τij := (ĉ2s+i − ĉ2s) · · · (ĉ2s+i − ĉ2s−j+1), 1 ≤ i, j ≤ s

τi,0 = 1, τi,s+1 = 0, 1 ≤ i ≤ s.

Bearing in mind that the order conditions imply

Y 0
i,n+2 − Ln[ĉ2s, . . . , ĉs](ĉ2s+i) = O(hs+1),

and that from (3.6)

[Y2s, . . . , Y2s−j] = O(hj) +O(hs+1), j ≥ 0,

then we conclude that

βij = τij, 1 ≤ j ≤ s, 0 ≤ i ≤ s.

This completes the proof. ¤

Next, we give an alternative formula for computing δi in the preceding theo-
rem.

21

Theorem 7 Assuming ρ(rn) 6= 0, the constants {δi}s
i=1 in theorem 6 can be

calculated by

δi = (z2s+i − L[ĉ2s, . . . , ĉs](ĉ2s+i)) /[z2s, . . . , zs−1], 1 ≤ i ≤ s, (3.12)

where {zi}3s
i=1 denotes the internal Runge-Kutta stages of the Runge-Kutta

composed method (with coefficient matrix Â), when it is applied to the scalar
problem

y′ = ts, tn = 0, yn = 0, h = 1, (3.13)

L[ĉ2s, . . . , ĉs](t) is the corresponding Lagrange interpolating polynomial, and
[z2s, . . . , z2s−j] represents the corresponding divided difference.

PROOF. Observe that according to the previous theorem, the starting algo-
rithm with non-stiff order s + 1 for the problem (3.13) would be,

Y 0
i,n+2 = L[ĉ2s, . . . , ĉs](ĉ2s+i) + δi[z2s, z2s−1, . . . , zs−1], 1 ≤ i ≤ s.

Now, since y(q)(tn) = 0, q 6= s + 1, from theorem 1 and using (2.22), (2.23),
(2.20) and (2.17), we have for this particular problem that

Yi,n+2 = Y 0
i,n+2, 1 ≤ i ≤ s.

Observe that in our notation, Yi,n+2 = z2s+i. In this way, if [z2s, . . . , zs−1] 6= 0,
we achieve the formula (3.12).

In order to see that ρ(rn) 6= 0 implies [z2s, . . . , zs−1] 6= 0, we proceed by
contradiction. Assume [z2s, . . . , zs−1] = 0, then for arbitrary constants {θi}s

i=1

we have that

z2s+i = L[ĉ2s, . . . , ĉs](ĉ2s+i) + θi[z2s, z2s−1, . . . , zs−1], 1 ≤ i ≤ s.

Now we consider the associated starting algorithm for arbitrary differential
systems,

Y 0
i,n+2 = Ln[ĉ2s, . . . , ĉs](ĉ2s+i) + θi[Y2s, Y2s−1, . . . , Ys−1], 1 ≤ i ≤ s. (3.14)

By using theorem 1 (a), we have that

Yi,n+1 − Y 0
i,n+2 = Kiy

(s+1)(tn)hs+1 +O(hs+2), 1 ≤ i ≤ s,

but the constants Ki, i = 1, . . . , s must vanish because this starting algorithm
is exact for the particular problem (3.13). This would imply we have a family
of starting algorithms of non-stiff order s+1, but this contradicts the theorem
6. ¤

22

4 Variable–order starting algorithm strategy and numerical exper-
iments

In this section we propose a strategy for the integration code to choose au-
tomatically, at each step, the most convenient starting algorithm so that it
has order as high as possible, but maintaining adequate stability properties.
This technique works well independently of the iteration used to solve the im-
plicit Runge-Kutta equations (typically, for stiff problems, a simplified New-
ton iteration [1,4], [15, Ch. IV.8] or some kind of Single-Newton iteration
[5,6,10,11,13]). It is motivated by the theory previously presented and by nu-
merical experiences carried out by the authors, and it is based on estimations
of the error of the starting algorithms.

Let us assume that we have a family of starting algorithms, namely,

{Y 0,(l)
i,n+2}, l = 0, 1, . . . p,

of consecutive orders, i.e.,

Y
0,(l)
i,n+2 − Yi,n+2 = O(hl+1), 1 ≤ i ≤ s, l = 0, 1, . . . p.

Since

Y
0,(l)
i,n+2 − Yi,n+2 = Y

0,(l)
i,n+2 − Y

0,(l+1)
i,n+2 +O(hl+2), 1 ≤ i ≤ s, l = 0, . . . , p− 1.

we can estimate the error of Y
0,(l)
i,n+2 by the difference ‖ Y

0,(l)
i,n+2 − Y

0,(l+1)
i,n+2 ‖.

In order to save some computations, instead of calculating the estimators for
every subindex i, we can compute the error estimator only for the last stage
(i = s). In this way we can define

El
s =‖ Y

0,(l)
s,n+2 − Y

0,(l+1)
s,n+2 ‖'‖ Y

0,(l)
s,n+2 − Ys,n+2 ‖, l = 0, . . . , p− 1. (4.1)

Since El
s = O(hl+1), the quotient El

s/E
l−1
s = O(h) should be expected to

be strictly smaller than 1 and therefore {El
s} a strictly decreasing sequence .

Then, the use of the order l algorithm is advised if it has an error El
s smaller

than that of order l − 1, El−1
s by a factor θ < 1. In case of similar errors, the

lower order algorithm is preferred because it has better stability properties.

On the other hand, if El
s < θEl−1

s , but El+1
s ≥ θEl

s, we can assume that the
asymptotic theory for the order is not valid for the size of the step we are
using, or well the errors are affected by stability. Then, the “large” value of
El+1

s = ‖ Y
0,(l+2)
s,n+2 − Y

0,(l+1)
s,n+2 ‖ could be due to a large error of the starting

algorithm of order l + 2, being in this case El+1
s an invalid estimation of the

error of Y
0,(l+1)
s,n+2 . If El

s << El−1
s , we can assume that the error of Y

0,(l+1)
s,n+2 is

23

smaller than the error of Y
0,(l)
s,n+2 (otherwise El

s would not be much smaller than
El−1

s).

Recall that for the Prothero & Robinson problem the error of the starting
algorithms satisfies (1.6) and therefore

El+1
s =

(
R0,(l+2)

s (hnλ)−R0,(l+1)
s (hnλ)

)
(yn − φ(tn)) +O(hl+2

n)

If there is no stability problems, that is, if the amplifying functions are small
enough, a large value of El+1

s will indicate that the error of Y
0,(l+1)
s,n+2 (the term

O(hl+2
n)) is large. However, a large value of El+1

s could also appear if the

amplifying function R0,(l+2)
s (hnλ) of the algorithm Y

0,(l+2)
s,n+2 is large (note that

the error estimators are detecting the effect of the insufficient stability). Such
a situation can be detected by comparing the values of El+1

s , El
s and El−1

s .

Taking into account the above considerations, we propose to choose the start-
ing algorithm according to the following strategy:

For certain prefixed constants η < θ < 1,

• If E1
s > θE0

s then Y
0,(0)
i,n+2 must be used.

• If Ej
s < θEj−1

s for j = 1, . . . , l and moreover El+1
s ≥ θEl

s (for l ≤ p − 2) or
well l = p− 1, then
· If El

s < ηEl−1
s , Y

0,(l+1)
i,n+2 will be used.

· Otherwise, Y
0,(l)
i,n+2 will be used.

The constants θ and η can be empirically adjusted. From our experiments
(based on the fifth order RadauIIA method) we have observed that an ade-
quate range of values for the constant θ can be the interval [0.5, 0.7], and η
can be chosen in [0.05, 0.15].

For our numerical experiments, we have selected the family of starting algo-
rithms based on Lagrange interpolation on the last consecutive internal stages,
given by

Y
0,(l)
i,n+2 = Ln[ĉ2s, . . . , ĉ2s−l](ĉ2s+i), 1 ≤ i ≤ s, l = 0, 1, . . . , s. (4.2)

The algorithms in this family have orders (stiff and non–stiff) from 0 to s, and
from (3.5) the error estimator can be computed easily by

El
s = ‖ Y

0,(l)
s,n+2 − Y

0,(l+1)
s,n+2 ‖

= ‖ Ln[ĉ2s, . . . , ĉ2s−l](ĉ3s)− Ln[ĉ2s, . . . , ĉ2s−l−1](ĉ3s) ‖
= ‖ [Y2s, . . . , Y2s−l−1](ĉ3s − ĉ2s) · · · (ĉ3s − ĉ2s−l) ‖, 0 ≤ l ≤ s− 1.

We have also employed the starting algorithm of nonstiff order s+1 that uses

24

the last s + 2 stages of the method (we are using the last two steps in this
case) given in theorem 6 by

Y 0
i,n+2 = Ln[ĉ2s, . . . , ĉs](ĉ2s+i) + δi[Y2s, Y2s−1, . . . , Ys−1], 1 ≤ i ≤ s,

and therefore
Es

s =‖ δs[Y2s, Y2s−1, . . . , Ys−1] ‖ .

The use of an algorithm with order (nonstiff) s + 2, based on the last s + 4
stages had also been considered. However, it did not give any substantial
improvement to the code in practice and since it force to keep s + 4 stages
and it can not be expressed in a simple, divided differences, way, we finally
decided not using it in our numerical experiments.

In order to check the behaviour of the technique we have incorporated it to
our integration code (the specifications for this code have been given in the
introduction) in a way that we can compare the performance when we use
each of the starting algorithms and also the variable–order technique.

In this case we are using the RadauIIA formula with 3 stages and the coeffi-
cients δi are given by

δ1 =
4−√6

10000

(rnrn+1)
2q(rn)

p(rn)
q1(rn, rnrn+1),

δ2 =
−4−√6

10000

(rnrn+1)
2q(rn)

p(rn)
q2(rn, rnrn+1),

δ3 =
−1

20

(rnrn+1)
2q(rn)

p(rn)
q3(rn, rnrn+1),

with

q1(r, u) = (−52 + 3
√

6)u2 + (−88 + 32
√

6)ru + (−60 + 15
√

6)r2,

q2(r, u) = (52 + 3
√

6)u2 + (88 + 32
√

6) ru + (60 + 15
√

6) r2,

q3(r, u) = 5 u2 + 8 ru + 3 r2,

q(r) =
(
(−4 +

√
6)r − 6 +

√
6
) (

(4 +
√

6)r + 6−√6
) (

10 r + 6−√6
)
,

p(r) = 100 r3 + (270− 45
√

6)r2 + (252− 72
√

6)r + 78− 33
√

6.

Moreover, for this method

ρ(rn) = det M = K r6
n p(rn), K =

9

5 · 107
(
√

6− 1),

and therefore, for rn > 0, ρ(rn) = 0 if and only if p(rn) = 0 and this only
happens for the value rn = 0.03483... Then, the order 4 algorithm will not be
used in the code if rn < 0.1.

25

The constants θ and η were adjusted experimentally, taking finally θ = 0.6
and η = 0.1.

With this code we have integrated a number of differential problems with
error tolerances ranging from 10−1 to 10−9 using the variable order technique
(we will refer it as V-code) and also using using the Lagrange interpolation

L(3)
i ,that is, the algorithm Ln[ĉ6, . . . , ĉ3](x) as standard codes do (we will refer

it as L-code). Here we will comment the results obtained with the codes on
some representative stiff problems.

While the L-code could integrate the Robertson problem only with error toler-
ances≤ 10−4, the V-code was able to integrate it for every tolerance. Moreover,
the efficiency of the V-code and the L-code were similar for low tolerances (the
particular results for this problem can be seen in table 1.1). A similar situa-
tion appears with the integration of the scalar test equation y′ = −(y − 1)2,
y(0) > 1, on a large integration interval as [0, 1011]. The L-code could not
integrate it for tolerances 10−1 to 10−6, while the V-code behaved efficiently
at every tolerance.

It is interesting to comment the behaviour of the codes when integrating the
problem E5 of the stiff DETEST package (see e.g. [8] or[15, p. 145]) where
we have taken [0, 1011] as integration interval as suggested by Alexander. The
L-code was not able to complete the integration of this problem at any of the
error tolerances, while the V-code performed an efficient integration for all
the tolerances. This is a practical evidence of the relevance that the starting
algorithms can have in the integration with implicit methods.

Finally we present the results obtained integrating the van der Pol problem
(see e.g. [15, p. 144]) along the integration interval [0, 2], for which both codes
behaved properly. In figure fig.4.1 we present an efficiency plot contrasting
the logarithm of the global error against the number of function evaluations.
From the figure, it is clear that the efficiency of the two codes is similar. The
V-code was slightly more efficient than the L-code for low tolerances, where
the starting algorithm of order 4 was often used in the V-code, and also for
large tolerances, due probably to the good stability properties of the low order
starting algorithms. In table 4.1 we present, for each tolerance, the number of
times that the V-code employed each starting algorithm along the integration
of this problem. Here NSS means the number of successful steps. As it can be
seen, for large tolerances the code uses the low order algorithms and, as we
reduce the tolerance, the code increases the use of the higher order algorithms.
For the smallest tolerance, the code uses the 4th order algorithm in most steps.

26

Table 4.1
Selection of each starting algorithm with van der Pol problem

TOL NSS L(0)
i L(1)

i L(2)
i L(3)

i order 4

10−1 222 59 55 22 74 78

10−2 230 55 49 18 92 78

10−3 268 55 32 19 145 88

10−4 312 62 27 17 160 121

10−5 392 38 10 21 237 174

10−6 502 34 4 16 277 258

10−7 638 32 2 20 192 467

10−8 888 25 3 22 127 778

10−9 1284 19 3 23 104 1189

5 Conclusions

A variable–order technique for the selection of the most convenient starting
algorithm for beginning Newton–type iteration in implicit Runge–Kutta meth-
ods have been described. By means of some numerical experiments, we have
shown that in the case of the 3–stages RadauIIA method the new strategy has
proved to be a very adequate tool to make the integration code more robust
and efficient. This technique, that can be applied to any implicit Runge–Kutta
method and not only for stiff problems, is based on the construction of a fam-
ily of starting algorithms with consecutive orders. We have also proposed a
particular family, based on the information of the two last integration steps,
that can be easily implemented by means of divided differences. The order of
the algorithms has been studied giving some order results for general two steps
starting algorithms. In this paper it has not been our objective the search of
the “best” family of starting algorithms but some research in this line is being
carried out by the authors.

References

[1] Bickart, T. A., An efficient solution process for implicit Runge–Kutta methods,
SIAM J. Numer Anal., 14 (1977) 1022–1027.

[2] K. Burrage, J.C. Butcher & F.H. Chipmann, STRIDE: Stable Runge-Kutta
integrator for differential equations, Report Series No. 150, Dept. Mathematics,
University of Auckland (1979).

27

−10

−9

−8

−7

−6

−5

−4

−3

log(GE)

0 4 8 12 16 20 24 28

NFN/103

/ − L–code
• − V–code

...
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
...

....

....

....

....

....

....

....

....

....

....

....

....

....

....

....

....

....

....

....

....

....

....

....

....

........................

..

..

..

..

..
........
........
........
........
........
........
........
....

..
..

..

..

..

..

..

..

..

..

..

..

..

..

..

.......................................

/

//

//

//

// //

//

//

//

/

•

••

••

••
•• ••

••

••

••

•

Fig. 4.1 Van der Pol problem

28

[3] K. Burrage, J.C. Butcher and F.H. Chipman, An implementation of singly–
implicit Runge–Kutta methods, BIT, 20 (1980) 326–340.

[4] J.C. Butcher, On the implementation of implicit Runge–Kutta methods, BIT,
16 (1976) 237–240.

[5] G.J. Cooper and J.C. Butcher, An iteration scheme for implicit Runge-Kutta
methods, IMA J. of Numer. Anal., 3 (1983) 127–140.

[6] G.J. Cooper and R. Vignesvaran, A scheme for the implementation of implicit
Runge-Kutta methods, Computing, 45 (1990) 321–332.

[7] K. Dekker and J.G. Verwer, Stability of Runge–Kutta methods for stiff nonlinear
differential equations (North Holland, Amsterdam, 1984).

[8] W.H. Enright, T.E. Hull and B. Lindberg, Comparing numerical methods for
stiff systems of ODEs, BIT, 15 (1975) 10–48.

[9] W.H. Enright and J.D. Pryce, Two FORTRAN packages for assessing initial
value methods, ACM Transactions on Mathematical Software, 13 (1) (1987)
1–27.

[10] S. González-Pinto, J.I. Montijano & L. Rández, Iterative schemes for three–
stage implicit Runge–Kutta methods, Appl. Numer. Math., 17 (1995) 363–382.

[11] S. González Pinto, S. Pérez Rodŕıguez & J.I. Montijano, On the numerical
solution of stiff IVPs by Lobatto IIIA Runge–Kutta methods, J. Comp. and
Appl. Math., 82 (1997) 129–148.

[12] S. González Pinto, J.I. Montijano & S. Pérez-Rodŕıguez, On the starting
algorithms for fully implicit Runge-Kutta methods, BIT, 40, 4 (2000) 685–714.

[13] S. González-Pinto, J.I. Montijano & S. Pérez-Rodŕıguez, On the implementation
of high order implicit Runge-Kutta methods, Computers Math. Applic., 41, 7/8,
(2001) 1009–1024.

[14] S. González Pinto, J.I. Montijano & S. Pérez-Rodŕıguez, Stabilized starting
algorithms for collocation Runge-Kutta methods, Comp. Math. Applic., in press.

[15] Hairer, E., Wanner, G., Solving Ordinary Differential Equations II Springer–
Verlag, (1996).

[16] M.P. Laburta, Starting algorithms for IRK methods, J. Comput. Appl. Math.,
83 (1997) 269–288.

[17] W.M. Lioen, J.J.B. de Swart and W.A. van der Veen, Test set for IVP solvers,
http://www.cwi.nl/cwi/projects/IVPtestset.shtml, Test set for IVP solvers,
1996.

[18] S.Pérez-Rodŕıguez, Integración de problemas stiff a través de métodos Runger-
Kutta, Ph. D. Thesis (2000), Universidad de La Laguna.

[19] A. Prothero, A. Robinson, On the stability and accuracy of one–step methods
for solving stiff systems of ordinary differential equations, Math. of Comp., 28
(1974) 145–162.

29

