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Abstract

This paper is concerned with the behavior of starting algorithms to solve the algebraic
equations of stages arising when fully implicit Runge-Kutta methods are applied to stiff initial
value problems. The classical Lagrange extrapolation of the internal stages of the preceding
step and some variants thereof that do not require any additional cost are analyzed.

To study the order of the starting algorithms we consider three different approaches.
First we analyze the classical order through the theory of Butcher’s series, second we derive
the order on the Prothero and Robinson model [16] and finally we study the stiff order
for a general class of dissipative problems. A detailed study of the orders of some starting
algorithms for Gauss, Radau IA-IIA, Lobatto IIIA-C methods is also carried out. Finally,
to compare the most relevant starting algorithms studied here, some numerical experiments
on well known nonlinear stiff problems are presented.
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Keywords: Stiff Initial Value Problems; Implicit Runge-Kutta methods; Solution of
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1 Introduction.

We consider the numerical solution of stiff initial value problems

(1.1) y′(t) = f(t, y(t)), y(0) = y0 ∈ IRm, t ∈ [0, T ],

where f : [0, T ]× IRm → IRm is assumed to be sufficiently smooth in a tubular neighborhood of
the unique solution y(t), t ∈ [0, T ] of (1.1).

For the solution of (1.1) we consider implicit Runge–Kutta methods in which the time step-
ping from (t0, y0) to (t1 = t0 + h, y1) is given by

y1 = y0 + h
s∑

i=1

bif(t0 + cih,Xi),

∗This work was supported by project DGES PB97–1018
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where the internal stages Xi are calculated from the system

(1.2) Xi = y0 + h
s∑

j=1

aijf(t0 + cjh,Xj) (i = 1, . . . , s).

We will denote by c = (c1, . . . , cs)T the node vector, by b = (b1, . . . , bs)T the weight vector
associated to the corresponding quadrature formula with s nodes and by A = [aij ] ∈ IRs×s the
coefficient matrix of the Runge–Kutta method. As usual, it will be tacitly assumed that Ae = c,
where e = (1, . . . , 1)T ∈ IRs.

Once the algebraic system (1.2) has been solved, typically by some modified Newton iteration,
we want to compute good approximations Y 0

i to the internal Runge–Kutta stages Yi of the next
step (t1 = t0 + h, y1) → (t2 = t1 + rh, y2) to start the iteration process for the new system

(1.3) Yi = y1 + h̄
s∑

j=1

aijf(t1 + cj h̄, Yj) (i = 1, . . . , s),

where r = h̄/h is supposed to be of moderate size, usually r ∈ (0, 2].
To this end we will consider the following two types of starting methods, that can be imple-

mented with little or practically no additional computational cost:

Starting algorithms of type I

(1.4) Y 0
i = γiy0 +

s∑

j=1

αijXj , i = 1, ..., s.

Starting algorithms of type II

(1.5) Y 0
i = y0 + hδif(t0, y0) + h

s∑

j=1

βijf(t0 + cjh, Xj), i = 1, ..., s.

The coefficients {γi, αij} and {δi, βij} must only depend on the stepsize ratio r and on the
coefficients of the RK method.

We will say that a starting algorithm (1.4) or (1.5) is of order q if this is the largest integer
such that

max
1≤i≤s

|Yi − Y 0
i | = O(hq+1).

Usually, the term O(hq+1) will depend on the successive elementary differentials of f , on the
stepsize ratio r and on the coefficients of the RK method. On the other hand, we will say that
the starting algorithm has stiff order q if max1≤i≤s |Yi− Y 0

i | = O(hq+1) where the term O(hq+1)
can depend on the successive derivatives of the exact solution y(t) of (1.1), but it is independent
of the elementary differentials of f(t, y(t)) when they are considered separately, that is, it does
not depend on the stiffness of the problem.

Let us note that from (1.2), starting algorithms of type I are in fact a particular case of
algorithms of type II with δi = 0, i = 1, . . . , s if

(1.6) γi +
s∑

j=1

αij = 1.
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In this case, denotingA = [αij ] and B = [βij ], the coefficients of the corresponding algorithms are
related by B = AA. Moreover, if A is nonsingular, all algorithm of type II with δi = 0, i = 1, . . . , s
can also be written as an algorithm of type I with A = BA−1. On the other hand, since
Yi = y0 + O(h) and Xi = y0 + O(h), condition (1.6) is required in order Y 0

i to have at least
order 0. Then, we will consider only starting algorithms of type I satisfying (1.6).

If matrix A is nonsingular, for computational purposes it is better to use an algebraically
equivalent version of (1.5) which consists in eliminating, by using (1.2), the derivatives of the
preceding step f(t0 + cjh,Xj), and putting Y 0

i as a linear combination of Xi, y0 and f(t0, y0).
Moreover if the method is stiffly accurate (i. e., bj = asj , j = 1, . . . , s) it is convenient to put
f(t0, y0) as a linear combination of the internal stages of the previous step with the purpose of
reducing the amplification of the accumulated errors when we evaluate the derivative function.
Nevertheless, for analysis purposes we prefer to keep the algorithm in the present form.

Starting algorithms of these types have already been considered by Nørsett and Thomsen in
[14]. Likewise in [11, 12], similar algorithms have been studied, mainly to start the iterations of
the RK Gauss methods applied to nonstiff hamiltonian problems. Also, in [11, 12] the author
proposes some variants that consist in adding one or two additional evaluations of the derivative
function with the purpose of gaining order and so reducing the number of iterations of the
iterative process employed. On the other hand, Sand in [18] studied starting algorithms of
type I for stiff problems, considering together with the usual order conditions (obtained by
comparing the expansions in powers of h of the starting algorithms and those corresponding to
the internal stages, by using the Butcher’s series theory), what he calls inverse order conditions,
i.e., expansions of the internal stages in powers of h−1, which can make sense as recognized by
Sand, when the spectral radius of the matrix h−1J−1(t0, y0) is small (here J = ∂f/∂y denotes
the Jacobian matrix). However, although he gives some suggestions concerning what conditions
of order to choose by considering an SDIRK method taken from [14], it is not clear if those order
conditions will be appropriate for fully implicit Runge-Kutta methods, such as those based on
Gauss, Radau, Lobatto points, or collocation RK methods in general. Moreover the theory of
the inverse order is not fully justified and the theory of the direct order (based on comparing
the expansions in powers of h) can not be satisfactory for stiff problems.

In [10] several kinds of starting algorithms, not only polynomial extrapolation but also
other implicit algorithms, are considered as predictor of certain iterated Runge-Kutta methods
(oriented to a parallel computation) based on Gauss, Radau or Lobatto points, and the order
of the resulting predictor-corrector methods is analyzed, as well as some relevant properties of
linear stability. Our objective in this paper is quite different, because we are interested in using
the starting algorithms in sequential computation.

On the other hand, in [9] Chap. IV.8 the authors recommend as starting values for the
simplified Newton iteration the polynomial interpolation of Lagrange on the internal stages Xi

and y0, of the preceding step evaluated at the points t = 1 + rci, rather than taking Y 0
i = y1

(both cases are starting algorithms of Type I). The authors base their considerations on the
performance of such a starting algorithm on a great variety of stiff problems as showed in the
integrations carried out by their code RADAU5 (which uses the three–stage Radau IIA formula).
It is widely recognized that the starting algorithms based on the polynomial interpolation of
Lagrange of the internal stages of the preceding step Xi and y0 yield good starting algorithms
in general when the RK method is a collocation method. In this paper we pursue to give a
theoretical support to this good behavior and moreover to analyze other starting algorithms of
possible interest for the integration of stiff problems.

A study of starting algorithms for differential algebraic problems has also been done in [17]
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and [15].

The paper is organized as follows, in section 2 we study the classical order of the proposed
starting algorithms through the Butcher series theory, in section 3 we consider the stiff order,
by analyzing first the Prothero and Robinson model and concluding with some order results
for nonlinear dissipative problems. In section 4 some numerical experiments are carried out in
order to confirm the theoretical results obtained in previous sections and to gain some insight
by comparing the most interesting starting algorithms.

2 Nonstiff order of the starting algorithms.

In this section we study the maximum attainable order for nonstiff problems of the starting
algorithms defined in the previous section.

Here and in the rest of the paper we will use the typical simplifying order conditions

B(p) : bT cj−1 = 1/j, (1 ≤ j ≤ p) C(q) : Acj−1 = cj/j, (1 ≤ j ≤ q),

where cj = (cj
1, . . . , c

j
s)T , and we will call the stage order of a RK (A, b) the largest integer τ

such that B(τ) and C(τ) hold.
To simplify the study of the order we will first give the following Lemmas:
Lemma 2.1. Let 1 ≤ q ≤ s and suppose that the a s-stage non-confluent RK (A,b) satisfies

B(q), C(q). Then a starting algorithm of type II has order ≥ q+1 if and only if for all i = 1, . . . , s

(2.1) δi + βT
i e = (1 + rci),

(2.2) βT
i cj−1 = ∆ij(r), j = 2, ..., q + 1,

where βT
i = (βi1, ..., βis) and ∆ij(r) = bT cj−1 + rAT

i (e + rc)j−1 being AT
i = (ai1, . . . , ais) the

ith–row of matrix A.
Proof. If we consider in (1.2) y0 as an additional stage X0 ≡ y0, the starting algorithm Y 0

i

can be seen as the approximation given by a Runge–Kutta method with Butcher tableau

(2.3)
c̃ Ã

Y 0
i p̃T

i

=
0 0 0T

c 0 A

Y 0
i δi βT

i

Similarly, the solution Yi of the implicit system (1.3) can be seen as the solution provided by a
Runge–Kutta

(2.4)
c̄ Ā

Yi pT
i

=
c A 0

e + rc ebT rA

Yi bT rAT
i

Now, comparing the Butcher’s series for Yi and Y 0
i and taking into account conditions B(q) and

C(q), the conditions for having order q + 1 reduce to (2.1), (2.2).
Remark 2.1. Since starting algorithms of type I (satisfying (1.6) ) are a particular case of

algorithms of type II, conditions (2.1), (2.2) reduce in this case to

(2.5) γi + αT
i e = 1, αT

i Acj−1 = ∆ij(r), 1 ≤ j ≤ q + 1,
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where αT
i = (αi1, ..., αis).

Lemma 2.2. Let us assume that an s-stage RK(A, b) fulfills B(p) and C(q). Then,

∆ij(r) =
(1 + rci)j

j
, i = 1, ...s, j = 1, ..., u.

with u = min{p, q}.
Proof. It follows immediately from the definition of ∆ij(r) after using B(p) and C(q).
Lemma 2.3. Let a s-stage non-confluent RK (A,b) be satisfying B(p) and C(q) with p, q ≥

s− 1. Let us denote V = [e, c, ..., cs−1] and eT
1 = (1, 0, ..., 0). Then

A is singular ⇔ eT
1 V −1Acs−1 = 0.

Proof. If s = 1 it is trivial. For s > 1 we denote K = eT
1 V −1Acs−1. Since all knots ci are

different the matrix V is nonsingular, hence there exist real numbers λj ; j = 0, . . . , s such that

Acs−1 =
s−1∑

j=0

λjc
j .

On the other hand, V −1cj = eT
j+1 where eT

j = (0, ...,
(j)

1 , ..., 0) ∈ IRs. From here it follows that

K = eT
1

s−1∑

j=0

λjV
−1cj = eT

1

s−1∑

j=0

λjej+1 = λ0.

Now, using C(s− 1) we can put

A[e, c, . . . , cs−1] = [c, c2, . . . , cs−1, e]




1 0 · · · 0 λ1

0 1/2 0 · · · λ2

0 0 1/(s− 1) λs−1

0 0 λ0




,

and taking determinants we conclude the proof.
Theorem 2.4. Let us assume that a s-stage non-confluent RK method satisfies B(s − 1),

C(s− 1). Then, for the starting algorithms of type I, we have that

(a) There exists a s-parameter family of order s − 1 (with γj , j = 1, . . . , s as parameters)
which is determined by the linear system

(2.6) αT
i e = 1− γi; αT

i cj = (1 + rci)j ; 1 ≤ i ≤ s, 1 ≤ j ≤ s− 1.

In particular, by choosing γj = 0; j = 1, . . . , s, the coefficients of the resulting starting
algorithm of order s− 1 are given by,

(2.7) αij = l̄j(1 + rci), 1 ≤ i, j ≤ s,

where {l̄j(t); j = 1, . . . , s} is the Lagrange basis associated to the knots {c1, . . . , cs}.

5



(b) If A is singular, the starting algorithm cannot reach order s.

(c) If A is nonsingular, there exists a unique starting algorithm of maximal order s. Moreover,
if B(s) and C(s) are fulfilled such a starting method is given by

(2.8)
γi = l0(1 + rci), 1 ≤ i ≤ s,
αij = lj(1 + rci), 1 ≤ i, j ≤ s,

where {l0(x), l1(x), ..., ls(x)} is the Lagrange basis associated to the knots {c0 = 0, c1, ..., cs}.
Proof.

(a) It is an immediate consequence of lemma 2.1, remark 2.1 and lemma 2.2, together with the
condition ci 6= cj for i 6= j.

Moreover, if we choose γi = 0, i = 1, . . . , s the linear system (2.6) reduces to

(2.9) αT
i cj = (1 + rci)j , j = 0, . . . , s− 1, (i = 1, . . . , s).

On the other hand, the Lagrange basis associated to the knots {c1, . . . , cs}

(2.10) l̄j(t) = π(t)/((t− cj)π′(cj)), j = 1, . . . , s; π(t) = (t− c1) · · · (t− cs)

satisfies

(2.11) tj =
s∑

k=1

l̄k(t)c
j
k, j = 0, 1, ..., s− 1.

Then, by taking t = 1 + rci; i = 1, ..., s it follows by the uniqueness of solution of (2.9) that
αik = l̄k(1 + rci); i, k = 1, . . . , s.
(b) We proceed by contradiction. Let us assume that A is singular and that the order s is
reached for the starting algorithm, then the parameters {αij , γi} must satisfy the linear system
(2.6) and the equation in (2.5) corresponding to j = s in remark 2.1, i.e.

(2.12) αT
i Acs−1 = ∆is(r).

Denoting V = [e, c, . . . , cs−1], RT
i =

(
1, (1 + rci), . . . , (1 + rci)s−1

)
and eT

1 = (1, 0, . . . , 0), condi-
tions (2.6) can be written in the form

(2.13) αT
i V = RT

i − γie
T
1 , i = 1, . . . , s

Now, multiplying these equations by the vector V −1Acs−1 and substituting in (2.12) we get

(2.14) RT
i V −1Acs−1 − γie

T
1 V −1Acs−1 = ∆is(r).

By lemma 2.3, since A is singular, it follows that eT
1 V −1Acs−1 = 0, hence

(2.15) RT
i V −1Acs−1 = bT cs−1 + rAT

i (e + rc)s−1, ∀r > 0.

Since the left side of this equation is a polynomial in r of degree at most s − 1, we get that
AT

i cs−1 = 0 for all i = 1, ..., s, i.e., Acs−1 = 0. This implies from (2.15) that bT cs−1 + rAT
i (e +

rc)s−1 ≡ 0, which leads to A ≡ 0. But this is impossible if s > 1 because Ae = c, and for s = 1 it
is also impossible because in this case X1 = y0 which implies from (2.6) that Y 0

i = y0, i = 1, . . . , s,
resulting a starting algorithm of order s = 0, but not of order s = 1.
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(c) Since A is nonsingular it follows from lemma 2.3 that eT
1 V −1Acs−1 6= 0, then the only starting

algorithm of order s (at least) satisfies (2.13)-(2.14), for each i = 1, . . . , s. Thus, it is explicitly
determined by

(2.16) γi =
RT

i V −1Acs−1 −∆is(r)
eT
1 V −1Acs−1

,

and by the linear system in (2.13). Let us see now that order s + 1 is impossible to reach (in
general). To get order s + 1 the method must satisfy, together with (2.13) and (2.16) the order
condition

αT
i Acs = bT cs + rAT

i (e + rc)s.

This implies that Acs = 0, since the left side in the above equation is a polynomial in r of degree
≤ s, whereas the second side is a polynomial of degree s + 1. Then A must vanish, which is
impossible.

On the other hand if we also assume B(s) and C(s), we have by lemma 2.2 that ∆is(r) =
(1 + rci)s/s. Then, the conditions to reach order s reduce to the linear systems (for each
i = 1, . . . , s) of dimension s + 1

(2.17) (γi, α
T
i )W = vT

i , i = 1, . . . , s

where

(2.18) W =
[

1 0 · · · 0
e c · · · cs

]
; vT

i = (1, (1 + rci), · · · , (1 + rci)s).

Proceeding in a similar way as in part (a) of the proof, it is easy to conclude that the Lagrange
basis associated to the knots {c0 = 0, c1, . . . , cs} satisfies the equations (2.17)-(2.18), and from
the uniqueness of solution of (2.17) the proof is complete.

Theorem 2.5. Let us suppose that an s-stage non-confluent RK method satisfies B(s− 1),
C(s− 1). Then, for the starting algorithms of type II, we have that

(a) There exists a s-parameter family of order s (with δj j = 1, . . . , s as parameters), which is
determined by the linear system

(2.19)

βT
i e = (1 + rci)− δi,

βT
i cj−1 =

(1 + rci)j

j
, j = 2, ..., s− 1,

βT
i cs−1 = ∆is(r).

Moreover, if B(s) and C(s) are fulfilled and we choose δj = 0; j = 1, . . . , s, the only
starting algorithm of maximal order s, is given by

βij =
∫ 1+rci

0
l̄j(t)dt, 1 ≤ i, j ≤ s,

where {l̄j(t); j = 1, . . . , s} is the Lagrange basis associated to the knots {c1, . . . , cs}. If A
is nonsingular such a starting algorithm coincides with the one of type I given in theorem
2.4–(c)

(b) Assuming B(s) and C(s), there exists a unique starting algorithm of order s+1 if and only
if A is nonsingular or the considered Runge–Kutta is the explicit Euler method.
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Proof.
(a) The first part is an immediate consequence of lemma 2.1 and lemma 2.2. Moreover, if B(s)
and C(s) are satisfied then conditions (2.19) can be written

(2.20) βT
i V = (1 + rci, (1 + rci)2/2, ..., (1 + rci)s/s); i = 1, . . . , s.

The Lagrange basis (2.10) associated to the knots {cj ; j = 1, . . . , s} satisfies (2.11), hence
integration of this last equation on [0, 1 + rci] yields

s∑

k=1

cj−1
k

∫ 1+rci

0
l̄k(t)dt = (1 + rci)j/j; i, j = 1, . . . , s.

Now, from the uniqueness of solution of the linear system (2.20) it follows that

βik =
∫ 1+rci

0
l̄k(t)dt; 1 ≤ i, k ≤ s.

If the RK matrix A is nonsingular, we have that this starting algorithm is equivalent to that one
of type I given in theorem 2.4–(c), since both starting algorithms can be expressed in the form

Y 0
i = y0 + h

s∑

j=1

βijf(t0 + hcj , Xj); 1 ≤ i, j ≤ s,

for adequate parameters βij and both are of order s. Hence the equivalence follows immediately
from the uniqueness of solution of (2.20).
(b) The conditions to reach order s + 1 for the starting algorithm are given (bearing in mind
B(s), C(s) and lemma 2.1) by

(2.21) δie
T
1 + βT

i V = R̄T
i ≡ (1 + rci, (1 + rci)2/2, ..., (1 + rci)s/s); 1 ≤ i ≤ s,

and by the equation βT
i cs = ∆i,s+1. This last equation can be replaced (by using (2.21)) by

(2.22) δie
T
1 V −1cs + ∆i,s+1 = R̄T

i V −1cs.

Then, from lemma 2.3 if A is nonsingular, K̄ = eT
1 V −1cs 6= 0 and the coefficients of the only

starting algorithm of order ≥ s + 1 are given by,

(2.23)





δi =
R̄T

i V −1cs −∆i,s+1(r)
eT
1 V −1cs

,

βT
i = R̄T

i V −1 − δie
T
1 V −1

1 ≤ i ≤ s.

Conversely, if the starting algorithm has order s + 1, (2.21) and (2.22) are satisfied. Now, if A
is singular then the equation (2.22) becomes,

∆i,s+1 = R̄T
i V −1cs, 1 ≤ i ≤ s.

By comparing the coefficient of rs+1 in the polynomials appearing in both sides of the last
equation we conclude that Acs = 0. Since the matrix V is nonsingular, there exist real numbers
λi such that,

(2.24) cs =
s∑

j=1

λjc
j−1.
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¿From here we can put,

0 = Acs =
s∑

j=1

λjAcj−1 =
s∑

j=1

1
j
λjc

j ,

which after replacing cs gives,

0 = λ1λse +
s−1∑

j=1

(
s

j
λj + λsλj+1)cj .

It follows that λj = 0, (j = 1, . . . , s), hence cs = 0 or equivalently c = 0. Now, if s > 1 this is
impossible, and if s = 1, we have that A = c = 0 and since B(1) is satisfied, the RK method
must be the Euler explicit method.

To see that the order s + 2 cannot be reached when A is nonsingular, we will show that if
we add the order conditions corresponding to the power s + 2 of h, we arrive to a contradiction.
Observe that this would imply

(2.25) βT
i Acs = bT Acs + rAT

i

(
ebT cs + rA(e + rc)s

)
, i = 1, . . . , s.

By (2.23) the left side of (2.25) is a polynomial of degree ≤ s + 1, which implies that A2cs = 0
or equivalently c = 0, which is impossible.

Remark 2.2. For non-confluent s-stage RK methods satisfying C(s), B(s) and with matrix
A nonsingular the starting algorithm of type II with maximal order s + 1, can be calculated by
the alternative formula (more practical than (2.23))

(2.26) Y 0
i = y1 + rh

s∑

j=1

aijFj , i = 1, ..., s,

where
Fj = P (1 + rcj), j = 1, ..., s

being P (x) the interpolation polynomial of the derivatives of the preceding step, i.e.,

P (0) = f(t0, y0); P (cj) = f(t0 + cjh,Xj), j = 1, . . . , s.

This can be easily verified by putting the starting algorithm (2.26) as one of type II and showing
that it fulfills the order equations given by (2.21) and βT

i cs = ∆i,s+1.

3 Stiff order of the starting algorithms.

The order results derived for the starting algorithms in the preceding section are based on
the Butcher’s series theory and are in principle relevant only for nonstiff problems. It is well
known that Runge–Kutta methods can give certain order reduction phenomenon when they are
applied to stiff systems and therefore a different analysis of the order must be done in this case.
As a first approach to the stiff case, we will study the behavior of the starting algorithms when
the RK method is applied to the linear Prothero and Robinson equation (see e.g. Hairer &
Wanner [9], chapter IV.15). After that, we will study the order of the algorithms on a more
general class of nonlinear stiff problems.
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3.1 The Prothero and Robinson model.

Let us consider the Prothero and Robinson model,

(3.1) y′ = f(t, y) = λ(y − φ(t)) + φ′(t), y(0) = φ(0), Re(λ) ≤ 0,

where φ(t) is assumed to be smooth enough in [0, T ] (for instance, we can consider that φ(t) is
an analytical function). If we apply a RK (Â, b̂) to advance from the point (t0, y0) to t1 = t0 +h,
we get (see e.g. [13]):

yRK(t0 + h) ≡ y1 = R̂(z)(y0 − φ(t0)) + φ(t0) +
∑

j≥1

φ(j)(t0)
j!

vj(z)hj

where z = λh, R̂(z) is the linear stability function of the RK method, i.e.

(3.2) R̂(z) = 1 + zb̂T (I − zÂ)−1e,

and the coefficients vj(z) are given by

(3.3)
{

vj(z) = −zµj + jµj−1, j = 1, 2, ...

µj = µj(z) = b̂T (I − zÂ)−1ĉj , j = 0, 1, ...

Then, since the solution of the problem at t0 + h can be expressed as

y(t0 + h) = φ(t0 + h) = φ(t0) +
∑

j≥1

φ(j)(t0)
j!

hj

the error is given by
y(t1)− y1 = R̂(z)(φ(t0)− y0) + dh(t0)

where dh(t0) =
∑

j≥1 φ(j)(t0)(1 − vj(z))hj/j! is the local error and the term R̂(z)(φ(t0) − y0)
represents the propagation of the previous error.

If the RK method (Â, b̂) is AS-stable, that is, supRe(z)≤0 |zb̂T (I−zÂ)−1|2 < ∞, then it is clear
that the coefficients vj are uniformly bounded in Re z ≤ 0 and the order of the local error dh(t0)
is independent of the stiffness of the problem. In the following we will assume that the Runge–
Kutta method (A, b) considered is AS and ASI–stable, i.e., supRe(z)≤0 |zbT (I − zA)−1|2 < ∞
and supRe(z)≤0 |(I − zA)−1|2 < ∞ (to see some aspects concerning AS and ASI–stability, see for
instance [1], [2]).

On the other hand, each internal stage Yi in (1.3) can be seen as a RK method with Butcher
tableau given by (2.4). Thus, for the Prothero & Robinson model we have

(3.4)

Yi = R̄i(z)(y0 − φ(t0)) + φ(t0) +
∑

j≥1

φ(j)(t0)
j!

vi,j(z)hj ,

vi,j(z) = −zµi,j + jµi,j−1, j ≥ 1,
µi,k = pT

i (I − zĀ)−1c̄k, k ≥ 0
R̄i(z) = 1 + zpT

i (I − zĀ)−1e.





If the RK (A,b) method is AS and ASI–stable, then R̄i(z) is uniformly bounded on Re z ≤ 0.
In fact, a direct calculation gives

(3.5)
(I − zĀ)−1 =

(
(I − zA)−1 0

u(z) (I − zrA)−1

)
,

u(z) = z(I − zrA)−1ebT (I − zA)−1
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and from here we can get after some calculations that

R̄i(z) = R(z)(1 + zrAT
i (I − zrA)−1e),

where AT
i = eT

i A and since 1+zAT
i (I−zA)−1e = eT

i (I +zA(I−zA)−1)e = eT
i (I−zA)−1e, then

(3.6) R̄i(z) = R(z)Ri(rz)

with
R(z) = 1 + zbT (I − zA)−1e, Ri(z) = eT

i (I − zA)−1e,

that are uniformly bounded.
Moreover, under the same conditions we can assure that,

sup
Re(z)≤0

max
1≤i≤s

|vij | ≤ Kj < ∞, (j ≥ 1).

To prove this, it is enough to see that |zµij | is uniformly bounded on Re(z) ≤ 0 for any 1 ≤ i ≤ s
and any fixed j ≥ 1. To this end, it suffices to show that the euclidean norm of the following
s× 2s matrix

M(z) ≡ z[ebT , rA](I − zĀ)−1

is uniformly bounded on Re(z) ≤ 0. After some manipulations and by using (3.5) we get,

M(z) = [e(zbT (I − zA)−1) + (zrA(I − zrA)−1)e(zbT (I − zA)−1) , zrA(I − zrA)−1].

Now the AS and the ASI-stability of the RK (A,b) yield the desired bound.
On the other hand, the approximation Y 0

i given by the starting algorithm (1.5) can be
considered as the approximation given by the RK method (2.3) and therefore

(3.7)

Y 0
i = R̃i(z)(y0 − φ(t0)) + φ(t0) +

∑

j≥1

φ(j)(t0)
j!

ṽi,j(z)hj ,

ṽi,j(z) = −zµ̃i,j + jµ̃i,j−1, j ≥ 1,

µ̃i,k = p̃T
i (I − zÃ)−1c̃k, k ≥ 0

R̃i(z) = 1 + zp̃T
i (I − zÃ)−1e





Taking into account the value of p̃i in (2.3), the coefficients µ̃i,j can be expressed in terms of the
coefficients of the starting algorithm as

µ̃i,0 = δi + βT
i (I − zA)−1e

µ̃i,j = βT
i (I − zA)−1cj , for j ≥ 1

and the amplifying error function as

(3.8) R̃i(z) = 1 + zδi + zβT
i (I − zA)−1e.

¿From (3.7) and (3.4), the error Yi − Y 0
i can be written

Yi − Y 0
i =

(
R̄i(z)− R̃i(z)

)
(y0 − φ(t0)) +

∑

j≥1

φ(j)(t0)
j!

(
vi,j − ṽi,j(z)

)
hj .
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To analyze the behavior of the starting algorithms, we will focus on three particular points:
the boundedness of the coefficients ṽi,j(z), the order of the algorithm, that is, the maximum
j ≥ 1 such that v̄i,j(z) − ṽi,j(z) = 0 for i = 1, . . . , s and for all z with Re z ≤ 0, and the
boundedness of the difference R̄i(z)− R̃i(z).

We will use the following lemma in the proofs of the next theorems.
Lemma 3.1. If the s–stage RK (A, b) satisfies the conditions C(q), then

(a) (I − zA)−1(−zcj + jcj−1) = jcj−1, 1 ≤ j ≤ q.

(b) (I − zrA)−1
[−z(e + rc)j + j(e + rc)j−1

]
= −z(I − zrA)−1e + j(e + rc)j−1, 1 ≤ j ≤ q.

Proof.
The first statement es equivalent to

−zcj + jcj−1 = (I − zA)jcj−1, 1 ≤ j ≤ q,

which follows immediately from C(q).
In the same way, the second statement is equivalent to

−z(e + rc)j + j(e + rc)j−1 = −ze + j(I − zrA)(e + rc)j−1, 1 ≤ j ≤ q,

which after some simplifications is equivalent to

(e + rc)j = e + jrA(e + rc)j−1, 1 ≤ j ≤ q.

The last equation follows from C(q) by expanding the powers of the binomials.
Theorem 3.2. Let us suppose that a s-stage RK (A,b) is ASI–stable. Then the coefficients

ṽi,j in (3.7) satisfy
sup

Re(z)≤0
max
1≤i≤s

|ṽij | ≤ K̃j < ∞, ∀j ≥ 1

if some of the following conditions are fulfilled:

a) The coefficients βij of the starting algorithm satisfy βT
i = αT

i A (i = 1, . . . , s) for some
vectors αT

i .

b) The RK method is non-confluent and satisfies C(s− 1) with ci = 0 for some 1 ≤ i ≤ s.

Proof. If βT
i = αT

i A, then zµ̃ij = zβi(I − zA)−1cj = zαiA(I − zA)−1cj and since zA(I −
zA)−1 =

(
(I − zA)−1 − I

)
, the ASI–stability gives the boundedness. If ci = 0 for some i, then

for all j ≥ s, cj can be written as a linear combination of c, c2, . . . , cs−1 and consequently, µ̃ij

can be written as a linear combination of µ̃i1, . . . , µ̃i,s−1. But by C(s − 1), cj = jAcj−1 for
1 ≤ j ≤ s− 1 and

zµ̃ij = jβi((I − zA)−1 − I)cj−1, 1 ≤ j ≤ s− 1,

which are uniformly bounded on Re(z) ≤ 0 by the ASI-stability. Now it is straightforward to
prove the uniform boundedness on Re(z) ≤ 0 of |zµ̃ij | for 1 ≤ i ≤ s and any fixed j ≥ 1.

Remark 3.1.

• Starting algorithms of type I are a particular case of algorithms of type II with βT
i = αT

i A.
Then for this kind of algorithms the coefficients ṽi,j are uniformly bounded for all 1 ≤ i ≤ s
and j ≥ 1.
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• If the matrix A of the method is nonsingular, then for each βT
i there exists a vector αT

i such
that βT

i = αT
i A and in consequence each starting algorithm of Type II has its coefficients

ṽi,j uniformly bounded.

Lemma 3.3. If a s-stage non-confluent RK (A,b) satisfies B(q) and C(q) (1 ≤ q ≤ s). Then,
a starting algorithm of type II with coefficients ṽi,j uniformly bounded has order stiff q for the
Prothero and Robinson equation if and only if

(3.9)
δi + βT

i e = (1 + rci),

βT
i cj−1 = ∆ij(r) = (1 + rci)j/j, j = 2, . . . , q; i = 1, . . . , s.

Proof. Since the coefficients ṽi,j are uniformly bounded, the algorithm will have order stiff
q if

(3.10) vi,j(z)− ṽi,j(z) = 0, ∀Re(z) ≤ 0, j = 1, ..., q,

with vi,j(z) and ṽi,j(z) given by (3.4) and (3.7) respectively. On the other hand, it is not difficult
to see that

vi,j − ṽi,j = dT
i (I − zĀ)−1(−zc̄j + jc̄j−1)− δiδj1, j ≥ 1,

with dT
i = (bT − βT

i , rAT
i ) and δj1 = 1 if j = 1 and 0 otherwise.

Now, from (3.5)

(3.11)

vi,j − ṽi,j = (bT − βT
i )(I − zA)−1(−zcj + jcj−1)

+rAT
i u(z)(−zcj + jcj−1)

+rAT
i (I − zrA)−1

[−z(e + rc)j + j(e + rc)j−1
]− δiδj1.

and by using lemma 3.1 we get after some calculations that (3.10) is fulfilled if and only if (3.9)
is satisfied.

Theorem 3.4. If a s-stage non-confluent RK (A, b) fulfills
(i) the simplifying conditions B(s− 1), C(s− 1),
(ii) the method is ASI-stable and AS-stable.
Then,

(a) The s–parameter family of starting algorithms of type I of order s−1 in part (a) of theorem
2.4 has also order stiff s− 1 for the Prothero and Robinson equation.

(b) If A is nonsingular there exists a unique starting algorithm of type I of order stiff s−1 that
reaches order s for quadratures, i.e. for the case λ = 0 (its coefficients are given by (2.6)
and (2.16)). If moreover, B(s) and C(s) are fulfilled such a starting algorithm reaches the
maximal order s (for any Re(z) ≤ 0) and its coefficients are given by,

γi = l0(1 + rci), αij = lj(1 + rci), 1 ≤ i, j ≤ s,

where {l0(t), . . . , ls(t)} is the Lagrange basis associated to the knots {c0 = 0, c1, ..., cs}.
Proof.

(a) It is an immediate consequence of theorem 3.2, remark 3.1, and lemma 3.3 with q = s− 1.

13



(b) If the matrix A is nonsingular the equations to reach order s− 1 for all Re(z) ≤ 0 and order
s for z = 0 are given by (2.6) and (2.16). If we moreover assume B(s) and C(s), then by using
lemma 3.3 with q = s and proceeding as in theorem 2.4–(c) we complete the proof.

Theorem 3.5. Let us suppose that we are in the same conditions as in theorem 3.4 and
let us also assume that one of the conditions a) or b) in theorem 3.2 is satisfied. Then for the
starting algorithms of type II we have:

(a) There exists a 2s-parameter family of order stiff s − 1 for the Prothero and Robinson
equation. If moreover we ask for order s for quadratures (i.e. for z = 0) we get the
s-parameter family given in theorem 2.5-(a).

(b) If C(s) and B(s) are assumed then the above s-parameter family reaches order stiff s.
Moreover, if we choose δi = 0 (i = 1, . . . , s), the coefficients of the starting algorithm of
maximal order s are given by,

βij =
∫ 1+rci

0
l̄j(t)dt, 1 ≤ i, j ≤ s,

where {l̄j(t); j = 1, . . . , s} is the Lagrange basis associated to the knots {c1, . . . , cs}, as in
theorem 2.5.

(c) By assuming C(s), B(s) and that the matrix A is nonsingular. Then the order s+1 cannot
be reached in general for all Re(z) ≤ 0. However, if we require order s in general, and
order s + 1 at the particular points z = 0 or well at z = ∞, we get a unique starting
algorithm.

Proof.
(a) ¿From lemma 3.3 the order s− 1, independent of the stiffness, is equivalent to (3.9) with

q = s−1 (which is also equivalent to (2.1)-(2.2) with q = s-2). Thus, the order conditions reduce
to a linear system of s− 1 equations with s + 1 unknowns (for each i = 1, . . . , s), which can be
written as follows

βT
i V ∗ = R∗T

i − δie
T
s−1,1, V ∗ = [e, c, ..., cs−2],

R∗T
i = (1 + rci, ..., (1 + rci)s−1/(s− 1)), eT

s−1,1 = (1, 0, ..., 0) ∈ IRs−1.

Since the range of matrix V ∗ is s− 1, we have a 2s-parameter family of starting algorithms.
On the other hand, if we require order s for quadratures, i.e. for z = 0, we have from (3.5)

that,
vi,s(0)− ṽi,s(0) = s

(
bT cs−1 + rAT

i (e + rc)s−1 − βT
i cs−1

)
= 0.

Hence the equations (2.1)–(2.2) for q = s − 1 are fulfilled. This drive us to the same starting
algorithms as in theorem 2.5–(a).
(b) If we assume B(s) and C(s) then the conditions for classical order s are equivalent to (3.9)
with q = s. From here we get a s-parameter family, with δi (i = 1, . . . , s) as parameters. Hence,
if we choose δi = 0 (i = 1, . . . , s), we have the starting algorithm given by theorem 2.5- (a) that
of course has order s on the Prothero and Robinson model.
(c) If moreover the matrix A is nonsingular, to get order s + 1 in z = 0 it is necessary that

vi,s+1(0)− ṽi,s+1(0) = (s + 1)(bT cs + rAT
i (e + rc)s − βT

i cs) = 0
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which drive us to the order equations (2.1)-(2.2) with q = s. The existence and uniqueness of
solution, which is given by (2.23), is assured by the non-singularity of the matrix A.

In order to study the order s + 1 for z = ∞, after some calculations we get that vi,s+1(∞)−
ṽi,s+1(∞) = 0 if and only if

βT
i A−1cs+1 = bT A−1cs+1 −AT

i A−1ebT A−1cs+1 + AT
i A−1(e + rc)s+1

which, bearing in mind that AT
i A−1 = (0, ..., 0,

(i

1, 0, ..., 0), is equivalent to

(3.12) βT
i A−1cs+1 = (1 + rci)s+1, 1 ≤ i ≤ s,

Hence, the order s in general and the order s + 1 at the infinity point is equivalent to (3.9)
with q = s and (3.12). It is not difficult to see that these equations have a unique solution given
by

(3.13)
δi =

R̄T
i V −1A−1cs+1 − (1 + rci)s+1

eT
1 V −1A−1cs+1

, βT
i = R̄T

i V −1 − δie
T
1 V −1,

V = [e, c, . . . , cs−1], R̄T
i = (1 + rci, . . . , (1 + rci)s/s).

In order to see that the order s + 1 cannot be reached on the Prothero and Robinson model,
we proceed by contradiction. If there exists a starting algorithm of type II of order s + 1, since
it reaches order s + 1 at z = 0 and at z = ∞, we get after equaling the expressions of δi in the
equations (3.13) and (2.23) the following (we denote K1 = eT

1 V −1cs and K2 = eT
1 V −1A−1cs+1)

K2(R̄T
i V −1A−1cs+1 − (1 + rci)s+1) = K1(R̄T

i V −1cs −∆i,s+1),

that is,

(3.14)
R̄T

i V −1(K2A
−1cs+1 −K1c

s) = K2(1 + rci)s+1

−K1(bT cs + rAT
i (e + rc)s), ∀r.

Now comparing the coefficients of the leading terms in the polynomials (on r) of the last equa-
tion we get K2c

s+1
i − K1A

T
i cs = 0 for every i = 1, ..., s, i.e. K2c

s+1 = K1Acs. Which gives
K2A

−1cs+1 = K1c
s, hence the left side of (3.14) is null. So we can put

K2(1 + rci)s+1 −K1(bT cs + rAT
i (e + rc)s) = 0, ∀r > 0,

or equivalently

(K2 −K1b
T cs) +

s∑

j=1

(
s + 1

j

)
rjcj

i

(
K2 − K1

s + 1

)
+ rs+1(K2c

s+1
i −K1A

T
i cs) ≡ 0.

This would imply B(s + 1) and C(s + 1), since K1 must be nonzero (see lemma 2.3 and recall
that the matrix A is nonsingular). This fact yields a contradiction because B(s+1) and C(s+1)
cannot be satisfied for any s-stage Runge-Kutta method.
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Comparing the amplifying error functions.

The amplifying functions of the exact solution Yi, R̄i(z), and the approximation Y 0
i , R̃i(z),

provided by the starting algorithm are given by (3.6) and (3.8) respectively:

R̄i(z) = R(z)Ri(z) =
(
1 + zbT (I − zA)−1e

)(
eT
i (I − zA)−1e

)
R̃i(z) = 1 + zδi + zβT

i (I − zA)−1e.

For the particular case of starting algorithms of type I (δi = 0 and βT
i = αT

i A), the amplifying
function R̂i(z) is

R̂i(z) = 1 + zαT
i A(I − zA)−1e

If the RK method is AS and ASI–stable, it is clear that R̄i(z) and R̂i(z) are uniformly
bounded on Re z ≤ 0. However, the amplifying function of type II algorithms can not be
bounded if some δi 6= 0 and A is nonsingular (If the matrix A were singular it is possible the
uniform boundedness of R̃i(z), but in this case δi and βi must satisfy a certain equation, we see
more about this in the next theorem for the case of Lobatto IIIA methods).

This fact may lead us to discard this kind of algorithms but if the RK(A,b) is stiffly accurate,
A-stable and its matrix A is nonsingular, the global errors for the Prothero and Robinson
equation satisfy φ(tn) − yn = O(z−1) (see [9], pp. 225–227) and consequently the product
R̃(z)(φ(tn) − yn) is bounded when z goes to infinity. Thus, starting algorithms of type II with
unbounded amplifying functions can be suitable for practical purposes when they are used with
stiffly accurate methods, such as Radau IIA, Lobatto IIIC and Lobatto IIIA.

The next theorem give us the behavior of the amplifying error functions evaluated at the
infinity point for different RK methods based on quadratures of high order.

Theorem 3.6. (a) For the RK Gauss, Radau IA, Radau IIA and Lobatto IIIC of s stages
(and in general for any RK with A nonsingular) we have for 1 ≤ i ≤ s that,

R̄i(∞) = 0, R̂i(∞) = γi, R̃i(∞) =
{

1− βT
i A−1e if δi = 0

∞ if δi 6= 0.

(b) For Lobatto IIIA methods of s stages and by denoting

A =
(

0 0T

w Ā

)
, wT = (a21, . . . , as1), Ā = [aij ]si,j=2,

b̄T = (b2, ..., bs), c̄ = (c2, ..., cs)T ,

eT
s−1,j = (0, ...,

(j)

1 , ..., 0) ∈ IRs−1, βT
i = (βi1, β̄

T
i )

we have for every 2 ≤ i ≤ s that

R̄i(∞) = (−1)seT
s−1,i−1Ā

−1w, R̂i(∞) = 1− ᾱT
i Ā−1c̄,

and

R̃i(∞) =
{

1− β̄T
i Ā−2c̄ if δi = −βi1 + β̄T

i Ā−1w
∞ otherwise.

Proof.
(a) It follows by taking limits when z →∞ in the expressions of the amplifying functions.

16



(b) For the Lobatto IIIA methods, since A is singular, we need some extra calculations, so we
can put

(I − zA)−1 =
(

1 0T

z(I − zĀ)−1w (I − zĀ)−1

)
,

(I − zA)−1e =
(

1
(I − zĀ)−1(zw + e)

)
.

Since Ā is nonsingular and Āe + w = c̄, it follows that

(3.15) (I − zĀ)−1(zw + e) = −Ā−1w − z−1Ā−2c̄ +O(z−2).

On the other hand, for these methods is well known that R(∞) = (−1)s−1, where R(z) is the
linear stability function of the method. Moreover,

Ri(z) = eT
s,i(I − zA)−1e = eT

s−1,i−1(I − zĀ)−1(zw + e), 2 ≤ i ≤ s.

¿From here it immediately follows that

R̄i(∞) = R(∞)Ri(∞) = (−1)seT
s−1,i−1Ā

−1w, 2 ≤ i ≤ s.

For the starting algorithms of type I we have, by putting αT
i = (αi1, ᾱ

T
i ), that

R̂i(z) = 1 + zαT
i A(I − zA)−1e = 1 + zᾱT

i

(
w + Ā(I − zĀ)−1(zw + e)

)
,

which after using (3.15) gives R̂i(∞) = 1− ᾱT
i Ā−1c̄, 2 ≤ i ≤ s. For the starting algorithms of

type II we have

R̃i(z) = 1 + zδi + z(βi1, β̄
T
i )(I − zA)−1e = 1 + zδi + zβi1 + zβ̄T

i (I − zĀ)−1(zw + e).

Now by using (3.15) it follows

R̃i(z) = z(δi + βi1 − β̄T
i Ā−1w) + (1− β̄T

i Ā−2c̄) +O(z−1), 2 ≤ i ≤ s,

and from here we conclude the proof.

3.2 Stiff order on dissipative problems.

Now, we are going to study the stiff order of the starting algorithms of type I and II on a
more general class of nonlinear differential equations that are typically considered in the study
of the convergence of Runge–Kutta or multistep methods (see e.g. [5], [3], [9]).

We will assume that the derivative function f satisfies a one-sided Lipschitz condition (the
norm considered will be the euclidean norm associated to an inner product, |v|2 = 〈v, v〉),

(3.16) 〈y − z, f(t, y)− f(t, z)〉 ≤ ν|y − z|2, ∀t ∈ [0, T ], ∀y, z ∈ IRm.

where ν = O(1), and we will pay special attention to the case ν = 0, i.e., when the problem is
dissipative. Here and throughout the paper O(1) will mean a quantity which is independent of
the stiffness of the problem.

We will also consider that the derivatives of the exact solution y(t) satisfy

(3.17) |y(l)(t)| ≤ Ml = O(1), ∀t ∈ [0, T ], l = 1, . . . , q + 1
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where q denotes the stage order of the RK considered.

The next theorems confirm that the main order results obtained in theorems 3.4 and 3.5
for the Prothero and Robinson equation remain valid also for the nonlinear family of problems
satisfying (3.16)-(3.17). There, the RK method was supposed to be AS– and ASI–stable, stability
properties that appear in a natural way in the study of the convergence of the methods with
linear stiff systems. To prove the order results with the nonlinear stiff equations, we will suppose
that the RK method is diagonally stable, i.e., there exist a positive definite diagonal matrix D
such that DA+AT D is definite positive. Let us note that this condition implies that the matrix
A is nonsingular and therefore the method is AS-, ASI–stable and condition a) of theorem 3.2
is always satisfied.

Theorem 3.7. Let a non-confluent RK (A, b) of s stages satisfying
(i) B(s-1) and C(s-1) and
(ii) it is diagonally stable.

Then, by considering the local assumption y0 = y(t0), the s–parameter family of starting
algorithms of type I of order s − 1 in part (a) of theorem 2.4 has order stiff s − 1. Moreover,
if B(s) and C(s) are fulfilled, the unique starting algorithm (of type I) of order s given by the
polynomial extrapolation of Lagrange, as indicated in statement (c) of theorem 2.4, has also
order stiff s.

Proof. Since this study cannot be carried out through the Butcher’s series theory we
consider a different approach that makes use of the assumptions (3.17) and (3.16). Thus, let us
denote

(3.18) X̂i = y(t0 + cih), Ŷi = y(t0 + (1 + rci)h), 1 ≤ i ≤ s,

being y(t) the exact solution of the initial value problem, and let us define the vectors

(3.19) Zi = γiy0 +
s∑

j=1

αijX̂j , 1 ≤ i ≤ s.

With these notations we can put,

(3.20) Yi − Y 0
i = Yi − Ŷi︸ ︷︷ ︸

(1)

+ Ŷi − Zi︸ ︷︷ ︸
(2)

+Zi − Y 0
i︸ ︷︷ ︸

(3)

.

Now, we analyze separately every addendum.
(1) From B(s−1), C(s−1) and the diagonal stability of the RK method, proceeding for instance
as in theorem 14.3, page 219 of [9], we can ensure that Yi − Ŷi = O(hs).

(3) Zi − Y 0
i =

s∑

j=1

αij(X̂j −Xj) = O(hs), since αij are uniformly bounded for r ∈ (0, r0], with

r0 = O(1) and (X̂j −Xj) = O(hs) (see theorem 14.3 in [9]).
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(2) By expanding in powers of h around t0 we have,

Ŷi − Zi = y(t0 + (1 + rci)h)− γiy0 −
s∑

j=1

αijy(t0 + cjh)

= γi(y(t0)− y0) + (1− γi −
s∑

j=1

αij)y(t0)

+
∑

k≥1

y(k)(t0)
k!


(1 + rci)k −

s∑

j=1

αijc
k
j


hk.

Hence the order conditions (2.6) together the local assumption y(t0) = y0 give us Ŷi − Zi =
O(hs). Moreover, assuming B(s), C(s), if the starting algorithm has order s, the three addenda
in (3.20) are O(hs+1) and we have order stiff s. On the other hand, the stiff order s + 1 cannot
be reached because for the particular case of the Prothero and Robinson model such fact is
impossible as we saw in theorem 3.4.

Theorem 3.8. If we consider an s–stage non-confluent Runge-Kutta (A, b) and assume
(i)-(ii) as in theorem 3.7, then by taking y0 = y(t0) we have for the starting algorithms of type
II that,
(a) The 2s-parameter family considered in theorem 3.5-(a) possesses order stiff s− 1.
(b) If B(s) and C(s) are also fulfilled, there exists a s-parameter family with stiff order s,
which is given by the equations (2.21) (take for instance, δi (i = 1, . . . , s) as parameters). If we
choose δi = 0 (i = 1, . . . , s), then the coefficients βij are given by the polynomial extrapolation of
Lagrange as indicated in theorem 3.5-(b).

Proof. By using the notations given into (3.18) and replacing Zi in (3.19) by

(3.21) Zi = y0 + hδif(t0, y0) + h
s∑

j=1

βijf(t0 + cjh, X̂j).

We can put
Yi − Y 0

i = Yi − Ŷi︸ ︷︷ ︸
(1)

+ Ŷi − Zi︸ ︷︷ ︸
(2)

+Zi − Y 0
i︸ ︷︷ ︸

(3)

.

By using the same arguments as in the proof of theorem 3.7 we have
(1) Yi − Ŷi = O(hs).
Now, by using the uniform boundedness of βij and the theorem 14.3, page 219 in [9] (recall

that A is nonsingular by the assumption (ii)) it is easy to see that,

(3) Zi − Y 0
i = h

s∑

j=1

βij(f(t0 + cjh, X̂j)− f(t0 + cjh,Xj)) = O(hs).

(2) By considering the Taylor expansions of y′(t0 + cjh) and y(t0 + (1 + rci)h) around t0, we
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arrive at,
Ŷi − Zi = y(t0)− y0 + hδi(y′(t0)− f(t0, y0))+

(1 + rci − δi −
s∑

j=1

βij)hy′(t0)

+
∑

k≥2

y(k)(t0)
k!


(1 + rci)k − k

s∑

j=1

βijc
k−1
j


hk.

Again with the local assumption y(t0) = y0, if the starting algorithm has order s − 1, then
Ŷi − Zi = O(hs) and it also has order stiff s− 1.

(b) The proof is similar to the proof of part (a).

Remark 3.2. In previous results we have supposed that y0 = y(t0). If we consider y0−y(t0)
as the global error of the preceding step and we suppose that the RK method is B–convergent
of order p, then y0 − y(t0) = O(hp) and consequently for the starting algorithms of type I

Yi − Y 0
i = O(hq), 1 ≤ i ≤ s,

being q = min{p, s − 1} or q = min{p, s} depending respectively on if B(s − 1), C(s − 1) or
B(s), C(s) are satisfied. This fact cannot be guaranteed at all for the starting algorithms of
type II when some δi 6= 0, which says in some sense that the algorithms of type II have in
general worse stability properties than those of type I (this fact was already reflected in the
analysis carried out on the Prothero and Robinson model). However, if the method is stiffly
accurate, then hδi(y′(t0) − f(t0, y0)) = O(hp) and the starting algorithm has again order stiff
q.

3.3 Some relevant starting algorithms.

In this section we summarize the order results of some relevant starting algorithms of types
I-II for the following Runge-Kutta methods: Gauss, Radau IA, Radau IIA, Lobatto IIIA and
Lobatto IIIC. We give a brief guide for practical purposes of use, by indicating the equations
that the starting algorithms must fulfill, as well as a special notation for them.

Type I.

L0
s: denotes de polynomial extrapolation of Lagrange based on the internal stages X1, . . . , Xs

and on y0, as indicated in theorem 2.4 by (2.8). As proved in previous sections, this algorithm
has order (stiff and nonstiff) s for Gauss and RadauIIA, that satisfy conditions C(s), and order
s − 1 for Radau IA and Lobatto IIIC, that satisfy C(s − 1). For Lobatto IIIA, even though
it satisfies C(s), its matrix A is singular and the algorithm has order s − 1. Concerning the
amplifying functions, they are uniformly bounded in all the cases, and the values at z = ∞ are
γi 6= 0.

L1
s: denotes de polynomial extrapolation of Lagrange of the internal stages X1, . . . , Xs (γi =

0), as indicated in theorem 2.4 by (2.7). It has order s − 1 in all the cases and the amplifying
functions (uniformly bounded) satisfy R̄i(∞) = 0, except for Lobatto IIIA. Let us not that for
this particular method, y0 = X1 and this algorithm is equivalent to L0

s.
MI

s: denotes the starting algorithm of type I of (classical ) order s when A is nonsingular
and the stage order of the RK method is s− 1 (see theorem 2.4). It is given by (2.6) and (2.16).
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Table 3.1: Gauss and Radau IIA (A nonsingular, C(s))
nonstiff order stiff order P-R order P-R order R̃i(∞)

at z = 0 at z = ∞
L1

s s− 1 s− 1 s− 1 s− 1 0
L0

s s s s s bounded
MII,1

s+1 s + 1 s s + 1 s ∞
MII,2

s+1 s s s s + 1 ∞

Table 3.2: Radau IA and Lobatto IIIC (A nonsingular, C(s− 1))
nonstiff order stiff order P-R order P-R order R̃i(∞)

at z = 0 at z = ∞
L1

s s− 1 s− 1 s− 1 s− 1 0
L0

s s− 1 s− 1 s− 1 s− 1 bounded
MI

s s s− 1 s− 1 s− 1 ∞

It makes sense for Radau IA and Lobatto IIIC (for the other methods, it coincides with L0
s). It

has order stiff s− 1 and the amplifying functions are bounded.

Type II

MII,1
s+1 : for Gauss and Radau IIA, denotes the starting algorithm of type II and classical

order s+1 given by (2.23). The order stiff is s and the amplifying function is not bounded when
z goes to infinity (see theorem 3.6).

MII,2
s+1 : for Gauss and Radau IIA, denotes the starting algorithm of classical order s and

order s + 1 at the particular point z = ∞ (on the Prothero and Robinson model). Its governing
equations are given by (3.13) (see theorem 3.5-(c)). As in the previous case, the order stiff is s
and the amplifying functions are not bounded when z goes to infinity.

MII,3
s+1 : for Lobatto IIIA, denotes the starting algorithm of classical and stiff order s given

by theorem 3.5-(b). For this algorithm the amplifying functions are not bounded when z goes
to infinity (see theorem 3.6).

Remark 3.3. For Radau IA and lobatto IIIC methods the stage order is s− 1, hence the
maximal order (classical) is s and we have a s-parameter family of this order. Moreover, this
family only achieves order s− 1 on the Prothero and Robinson model and the stiff order is s− 1
(in the case of Lobatto IIIC a special analysis must be carried out because these methods are
not diagonally stable for s > 2, and their stiff order would be only s− 2 for problems satisfying
(3.16) with ν < 0).

Table 3.3: Lobatto IIIA (A singular, C(s))
Nonstiff order stiff order P-R order P-R order R̃i(∞)

at z = 0 at z = ∞
L1

s ≡ L0
s s− 1 s− 1 s− 1 s− 1 bounded

MII,3
s+1 s s s s ∞
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In tables 3.1, 3.2 and 3.3 we summarize the properties of the starting algorithms considered.

4 Numerical experiments.

In this section we present some numerical experiments showing the performance of the start-
ing algorithms studied in previous sections.

As Runge–Kutta method we have chosen the fifth–order, three–stage RadauIIA formula that
has been implemented in the code RADAU5 [9]. This method satisfies conditions C(3) and is
stiffly accurate so that we can compare the efficiency of the starting algorithms L1

3, L0
3, MII,1

4 and
MII,2

4 whose properties are given in table 3.1 for s = 3. For comparison purposes we have also
included the starting values Y 0

i = y1, i = 1, 2, 3. They are in fact type I algorithms with γi = 0
and αT

i = (0, 0, 1), their order (stiff and classical) is 0 and their amplifying function R̃i(z) = R(z)
equal the amplifying function of the RadauIIA method.

In order to do our experiments, we have modified the code RADAU5 so that it can use these
starting algorithms and we have integrated a number of stiff problems, including those of the
well known DETEST package [4].

To measure the efficiency of the algorithms, we have computed for each problem and error
tolerance the global error (GE) of the numerical solution at the end of the integration interval
and the number of evaluations of the derivative function (NFN) required in the integration. This
can not be an adequate measure of the final computational cost in implicit methods, mainly if
the dimension of the differential system is large. However, in most cases a larger value of NFN
corresponds with a larger value of the number of LU matrix factorizations and evaluations of
the Jacobian matrix, and we have considered this value NFN useful because it gives us a good
idea of the cost involved in the iterations of the modified Newton scheme.

In figure 4.1 we have plotted the pairs (NFN, Log(GE) ) obtained integrating with absolute
and relative error tolerances 10−2, 10−3, . . . , 10−9 the Van der Pol problem:

Problem 1.- The Van der Pol oscillator (see e. g. [9] pp. 144)

y′1 = y2 y1(0) = 2
y′2 = ((1− y2

1)y2 − y1)/ε y2(0) = 0,
t ∈ [0, 2], ε = 10−6.

In figure 4.2 we have plotted the corresponding pairs of values obtained integrating the
Oregonator problem:

Problem 2.- The Oregonator (see e. g. [9] pp. 144).

y′1 = 77.27(y2 + y1(1− 8.375× 10−6y1 − y2)) y1(0) = 1
y′2 = (y3 − (1 + y1)y2)/77.27 y2(0) = 2
y′3 = 0.161(y1 − y3) y3(0) = 3,
t ∈ [0, 360].

In the figures we can observe how for low tolerances starting algorithms with higher order
perform better than the others and in particular MII,1

4 , that has the highest classical order, is
the most efficient. For large tolerances, there are no clear differences between the algorithms.
Such kind of results have been obtained in most of the problems we have integrated, thus they
represent in some way the general behavior of these starting algorithms for stiff problems.
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RTOL INI GE NSTEP NRC NLU NSOL NFN NITER

10−2 y1 0.7644E-03 128 49 169 523 1698 2.74
L1

3 0.8244E-03 119 36 149 392 1296 2.58
L0

3 0.5429E-04 122 28 144 367 1224 2.43
MII,2

4 0.3064E-03 121 22 138 417 1372 2.84
MII,1

4 0.6045E-03 122 27 145 377 1254 2.52
10−4 y1 0.8551E-05 302 44 316 1036 3410 2.76

L1
3 0.3426E-05 285 16 272 756 2553 2.43
L0

3 0.9128E-05 283 8 258 674 2305 2.25
MII,2

4 0.8832E-05 287 3 261 745 2522 2.39
MII,1

4 0.5668E-05 285 6 234 607 2106 2.02
10−6 y1 0.2672E-06 900 0 521 2486 8359 2.74

L1
3 0.5884E-07 856 1 695 1881 6500 2.18
L0

3 0.2050E-07 848 0 595 1589 5616 1.85
MII,2

4 0.3933E-07 859 0 694 1879 6497 2.17
MII,1

4 0.7227E-07 845 0 556 1286 4704 1.50
10−8 y1 0.1467E-08 2901 0 2035 8894 29584 3.06

L1
3 0.3013E-09 2719 1 2059 5587 19481 2.05
L0

3 0.8068E-09 2699 0 1327 4286 15558 1.59
MII,2

4 0.8254E-10 2719 0 1956 5283 18569 1.94
MII,1

4 0.4708E-09 2657 0 1049 3378 12792 1.27

Table 4.1: Van der Pol problem.

In table 4.1 we present for the Van der Pol problem a more detailed set of values obtained
in the integrations. In particular, for each starting algorithm and error tolerance, we give
the number of successful steps (NSTEP), the number of rejected steps due to a fail in the
convergence (NRC), the number of LU factorizations (NLU), the number of triangular systems
solved (NSOL), the average number of iterations required to reach convergence at each step
(NITER), the number of evaluations of the derivative function NFN and the global error at the
end point of the integration interval GE.

It can be seen in the table that in general, all the algorithms give a similar number of steps and
LU factorizations, except perhaps the algorithm Y 0

i = y1 that has just order 0. Regarding the
number of iterations required to get convergence of the iterative scheme, it decreases in general
as the order of the algorithm increases and therefore the same happens with the number of
evaluations of the derivative function and the number of triangular systems solved. In particular,
MII,1

4 is in this sense the most efficient.
With some problems we have observed that iterations started with algorithms with un-

bounded amplifying functions (MII,1
4 and MII,2

4 ) present more difficulties to converge than the
others, mainly for large tolerances. In these cases, the algorithms for which the amplifying func-
tion vanishes when z goes to infinity turned out to be more robust than the others. An example
of such a kind of problem is the E5 of the DETEST package:
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Problem 3.- E5 of DETEST package (see e. g. [9] pp. 145).

y′1 = −7.89 · 10−10y1 − 1.1 · 107y1y3 y1(0) = 1.76 · 10−3

y′2 = 7.89 · 10−10y1 − 1.13 · 109y2y3 y2(0) = 0
y′3 = 7.89 · 10−10y1 − 1.1 · 107y1y3 y3(0) = 0

−1.13 · 109y2y3 + 1.13 · 103y4

y′4 = 1.1 · 107y1y3 − 1.13 · 103y4 y4(0) = 0,
t ∈ [0, 1000].

In figure 4.3 we have plotted the pairs (NFN, Log(GE)) obtained integrating the E5 problem.
In this case, due to the particular values of the solution of this problem, we have used different
relative and absolute error tolerances. More precisely, we have taken relative error tolerances
RTOL from 10−2 to 10−9 and for each of them we have taken as absolute error tolerance ATOL
= RTOL ×10−3.

As we can see, the algorithms MII,1
4 and MII,2

4 present an anomalous behavior. Besides
that, with these algorithms the solution obtained with RTOL = 10−2 and 10−3 was not valid
and we have not include the corresponding values in the plot. The algorithms L0

3 and L1
3 present

a more regular behavior and L1
3 performs even better than the other, due probably to the fact

that its amplifying function vanishes at infinity.
In Table 4.2 we present for the E5 problem, the same kind of data as in Table 4.1 for the

Van der Pol problem.
It can be seen in the table that in general, for low error tolerances all the algorithms give

a similar number of steps and LU factorizations, except again the algorithm Y 0
i = y1 that has

only order 0. However, the algorithms with unbounded amplifying functions provide a numerical
solution with a higher error which make them less efficient. For large tolerances, the algorithms
MII,1

4 and MII,2
4 make the method integrate the problem with more steps than with the other

starting algorithms and in particular for tolerances 10−2 and 10−3 the code was not able to
complete the integration.

We must mention that integrating this problem with the same relative error tolerances and
taking as absolute error tolerances ATOL = RTOL ×10−10, that is, an almost pure relative
error control, the behavior of the algorithms was similar to that of Van der Pol or Oregonator
problems.

In conclusion, from our experiments we can deduce that increasing the order of the starting
algorithm can lead to more efficient integrations, but a special attention must be paid to the
amplifying error functions if we want to have also a robust integrator. Some more effort must
be done in the search of new starting algorithms according to these requirements and such a
research is the subject of current work.
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Fig. 4.1 Van der Pol problem
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Fig. 4.2 Oregonator problem
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Fig. 4.3 E5 problem
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RTOL INI GE NSTEP NRC NLU NSOL NFN NITER

10−2 y1 0.9853E-06 9 1 10 13 48 1.22
L1

3 0.8701E-07 11 3 13 20 71 1.18
L0

3 0.1922E-05 10 2 11 15 55 1.10
MII,2

4 *** ** ** ** ** ** ****
MII,1

4 *** ** ** ** ** ** ****
10−3 y1 0.2132E-05 10 1 11 18 64 1.40

L1
3 0.7734E-05 10 1 11 15 55 1.20
L0

3 0.2519E-07 11 2 13 19 68 1.36
MII,2

4 *** ** * ** ** ** ***
MII,1

4 *** ** * ** ** ** ***
10−4 y1 0.1341E-07 10 0 10 17 61 1.70

L1
3 0.1585E-07 11 1 12 19 68 1.36
L0

3 0.2593E-08 11 1 12 18 65 1.45
MII,2

4 0.3314E-06 31 45 74 135 436 1.42
MII,1

4 0.1277E-07 22 29 51 88 286 1.36
10−6 y1 0.1855E-08 15 0 15 28 99 1.73

L1
3 0.7028E-09 15 0 16 25 90 1.53
L0

3 0.9694E-09 15 0 16 25 90 1.47
MII,2

4 0.5708E-06 32 22 55 96 320 1.59
MII,1

4 0.5335E-07 16 1 17 27 97 1.56
10−8 y1 0.1881E-08 31 1 20 66 229 1.87

L1
3 0.7518E-10 32 0 24 57 203 1.72
L0

3 0.1003E-10 32 0 23 47 173 1.41
MII,2

4 0.1799E-09 34 0 25 63 223 1.74
MII,1

4 0.4389E-09 32 0 24 46 170 1.31

Table 4.2: E5 problem.
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