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Abstract

We consider some important aspects about the implementation of high order im-
plicit formulas (specially the Gauss methods) for solving second-order differential
systems having high frequencies and small amplitudes superimposed. The choice of
an appropriate iterative scheme is discussed in detail. Important topics about the
predictors (initial guesses) are analyzed and a variable order strategy to select the
best predictor at each integration step is supplied. A few numerical experiments on
some standard test problems confirm the theory presented.
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1 Introduction

We consider the numerical solution of oscillatory problems in the possible presence of stiffness
for second order differential systems of special type

y′′(t) = f(t, y(t)), y(t0) = y0, y′(t0) = y′0, t ∈ [t0, tend], y, y′, f ∈ Rm. (1.1)

The stiffness in this case means that the solution y(t) combines components with dominant short
frequencies and components with large frequencies and small amplitudes. This phenomenon
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appears in many practical problems of type (1.1).

Most numerical methods proposed to integrate (1.1) can be arranged in three groups, the
linear multistep methods (LM), the direct hybrid methods and the one step methods. The
linear multistep approach suffers the inconvenience of having the convergence order limited to
two if P-stability is required [17]. To overcome the barrier of P-stability Cash [1,2], Thomas
[20], Chawla et al. [4,5] have considered hybrids variants of multistep methods, by introducing
additional off-step points in the LM formula. P-stable hybrid methods of orders 4,5,. . . ,8, have
been derived by these authors. Inside the class of Runge-Kutta-Nyström (RKN) methods it is
possible to get P-stable formulas of arbitrarily large order [10]. Van der Houwen and Sommeijer
[15], Sharp et al. [19] and Franco et al. [6] among others, have obtained high order P-stable
Diagonally Implicit Runge-Kutta-Nyström methods (DIRKN) with high orders in the phase.

The attractiveness of DIRKN methods comes from the special structure of their coefficient
matrix, which allows to reduce the algebraic cost when solving their internal stages by some
Newton-type iteration. However, for getting the same accuracy in terms of convergence order
DIRKN methods require more internal stages than other P-stable highly implicit RKN methods,
such as those derived from the Gauss family (or Lobatto IIIA family) [13, p.72-75] (the RKN
version). For that reason, the search of a cheap implementation for these highly implicit RKN
methods is an interesting alternative and possibly more efficient than the DIRKN approach.

In this paper we pursue several objectives addressed to get an efficient implementation of highly
implicit RKN methods. We will be mainly concerned with the Runge-Kutta Gauss family, but
the results can be extended to other highly implicit methods. Our first goal will be to analyze
the usual Simplified Newton Iteration (SNI) in some detail. Next, an alternative iteration which
reduces the computational effort with regard to SNI will be developed (sections 2 and 3). Initial
guesses of several orders, with no large amplification factors for the accumulated errors at each
integration step, and a criterion to select the best one at each step will be supplied in section
4. A few numerical experiments comparing several iterations will be presented in section 5.

2 Alternatives to the Simplified Newton Iteration for RKN methods

An s-stage Runge-Kutta-Nyström method RKN (Ā, c, b, b̄) advances the numerical solution
from (tn, yn, y′n) to (tn+1 = tn + h, yn+1, y

′
n+1) by means of the formula

yn+1 = yn + hy′n + h2(b̄T ⊗ I)F (Yn), y′n+1 = y′n + h(bT ⊗ I)F (Yn), (2.1)

where the internal stages Y T
n = (Y T

n,1, . . . , Y
T
n,s) ∈ Rms are computed from

Yn = e⊗ yn + h(c⊗ y′n) + h2(Ā⊗ I)F (Yn), (2.2)

with F T (Yn) := (fT (tn + c1h, Yn,1), . . . , f
T (tn + csh, Yn,s)) ∈ Rms, e = (1, . . . , 1)T ∈ Rs, ⊗

standing for the standard Kronecker product of matrices (A ⊗ B = (aijB)) and I for the
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identity matrix of appropriate dimension. The matrix Ā = (āi,j)i,j=1,s and the vectors cT =
(cj)j=1,s, bT = (bj)j=1,s and b̄T = (b̄j)j=1,s represent the coefficients of the underlying RKN
method. Throughout the remainder of the paper it will be assumed that

Ā = A2, b̄T = bT A, c = Ae, det A 6= 0,
where the matrix-vector coefficients (A, b) are those ones of some Runge-Kutta method aimed
to integrate first order differential systems. That is the case for Gauss methods.

The usual Simplified Newton Iteration computes the internal stages by the formula

(I − h2(A2 ⊗ Jn))(Y (ν)
n − Y (ν−1)

n ) = D(Y (ν−1)
n , yn, hy′n), ν = 1, 2, . . . , (2.3)

for a given initial guess Y (0)
n , where Jn ' ∂f

∂y
(tn, yn) and the residual mapping D(·) is defined

by,

D(Z, u, v) := −Z + e⊗ u + (c⊗ v) + h2(A2 ⊗ I)F (Z), u, v ∈ Rm, Z ∈ Rms. (2.4)

For the s-stage Gauss method the algebraic cost of the iteration (2.3) can be reduced, by
decoupling the ms real linear systems into [s/2] complex linear systems (here [x] denotes the
integer part of the real number x) of dimension m plus one real linear system of dimension
m when s is odd. These linear systems are usually solved by making LU factorizations and
reducing each linear system to two triangular systems. In this way the same LU can be used
over all the iterates at every integration step and also on several consecutive integration steps
when the convergence is fast and the step-size is unchanged. For more details on this technique
when applied to the two-stage Gauss method, see Gladwell and Thomas [7, p.187-190 ].

Once the convergence in (2.3) is reached, namely after µ iterations, then we might replace
Yn ' Y (µ)

n , and the advancing solution can be computed by using (2.1). This way presents two
major inconveniences, firstly s extra derivative evaluations are required, i.e. the updating of the
super-vector F (Y (µ)

n ), and secondly and most important the difference F (Yn) − F (Y (µ)
n ), can

be large in the presence of stiffness. To avoid both drawbacks we use the following alternative
formula

yn+1 = r∗yn + (bT A−1 ⊗ I)Yn, r∗ = 1− bT A−1e, r′ = −bT A−2e,

vn+1 = r′yn + r∗vn + (bT A−2 ⊗ I)Yn, vn := hy′n, vn+1 := hy′n+1.
(2.5)

It is interesting to notice that for nonlinear differential systems in general, the error Yn − Y (ν)
n

behaves as

Yn − Y (ν)
n = O(h3)(Yn − Y (ν−1)

n ), h → 0, ν = 1, 2, . . . , (2.6)
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provided that

Jn − ∂f

∂y
(tn, yn) = O(h) and Yn − Y (0)

n = O(h), when h → 0. (2.7)

This follows from (2.3) and (2.4), by taking into account that

D(Y (ν−1)
n , yn, vn)−D(Yn, yn, vn) = (−I + h2(A2 ⊗ Jn) +O(h3))(Y (ν−1)

n − Yn), ν = 1, 2, . . . .

Now, from (2.6) we get that

Yn − Y (ν)
n = h3ν(Cν +O(h))(Yn − Y (0)

n ), ν = 0, 1, . . . , (h → 0), (2.8)

where Cν is a moderately sized constant matrix which may depend on ν.

As remarked by Gladwell and Thomas [7] and the references therein, the Simplified Newton
Iteration presents a few disadvantages which had led several authors to look for better alter-
natives [3,7,18]. The main drawback of (2.3) comes from the fact that it requires the usage
of complex arithmetic in order to get an efficient implementation for highly implicit methods
such as those of the Gauss family (s ≥ 2 stages). The usage of complex arithmetic implies
that the operational costs (LU -factorizations, solution of triangular systems, multiplication of
matrix by vector) are four times more expensive than their real arithmetic counterparts. On
the other hand, with regard to the storage and the matrix updating, it must be observed that
the Simplified Newton Iteration involves [s/2] complex LU -factorizations and 2(s/2 − [s/2])
real LU -factorizations per integration step. It is also worthwhile to mention the conclusions
of Gladwell and Thomas [7, p.205], where for the two stage Gauss method, they ”tentatively”
recommend the scheme proposed by Cooper and Butcher [3] rather than the Simplified Newton
Iteration. It is also recognized in [8] that the Cooper and Butcher iteration is a good alternative
for first order stiff problems. However, this iteration [3] when applied to (1.1) presents a few
inconveniences. Firstly, it was designed for first order problems, thus it requires a lot of inter-
mediate matrix by vector transformations when it is applied to second order problems, see [7,
p.192-193] for the case of the two-stage Gauss method. Secondly, and this is even more impor-
tant, the order in h is not increased during the iteration process, although the error coefficients
might decrease. Hence, independently of the number of iterations per step, we will end up with
a low order method caused by the order of the predictor, which is usually rather low.

To overcome the drawbacks of the iteration [3] on second order problems, we propose a direct
iteration of Newton-type for solving the stage equations (2.2), which reminds of the perfect
square iteration [18] and it can also be considered as the second order version of the iteration
in [8, see (1.8)], which only applies to first order problems. The new iteration read as,

(I − h2(T ⊗ Jn))(Y (ν)
n − Y (ν−1)

n ) = D(Y (ν−1)
n , yn, hy′n), ν = 1, 2, . . . , (2.9)

where Jn ' ∂f/∂y(tn, yn), the residual D(·) is defined in (2.4) and T ∈ Rs×s is a constant
matrix with an one-point spectrum σ(T ) = {γ}, γ > 0. This matrix will be properly optimized
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for some particular methods, taking into account some considerations given later. Since the
matrix T has a single spectrum we can set

T = γS(I − L)−1S−1, (2.10)

where L is a strictly lower triangular matrix and S is a nonsingular matrix. In this way, it is
not very difficult to see that the iteration (2.9) can be rewritten as

(ξI − (I ⊗ Jn))∆(ν) = (ξP ⊗ I)D(Y (ν−1)
n , yn, hy′n) + (ξL⊗ I)∆(ν), ν = 1, 2, . . . ,

Y (ν) = Y (ν−1) + (S ⊗ I)∆(ν), with ξ = (γh2)−1 and P = (I − L)S−1.
(2.11)

For computational purposes the formulation (2.11) is preferred to (2.9) since the former allows to
decouple each ms-dimensional linear system into s systems of dimension m. Moreover, only one
real LU factorization (of dimension m) is needed in the case of (2.11). However, for analysis
purposes we will work with the formulation (2.9). It is also important to remark that when
numerical convergence is achieved in (2.11), namely after µ iterations, we replace Yn ' Y (µ)

n

and compute the advancing solution by formula (2.5), which is more stable as said above.

The error of the iterates in (2.9) for differential systems satisfies the recursion

Yn − Y (ν)
n = O(h2)(Yn − Y (ν−1)

n ), h → 0, ν = 1, 2, . . . , (2.12)

provided that (2.7) is fulfilled. This implies that

Yn − Y (ν)
n = h2ν(C∗

ν +O(h))(Yn − Y (0)
n ), h → 0, ν = 0, 1, . . . , (2.13)

where C∗
ν is a constant matrix, possibly depending on ν. The O(h)-term in (2.13) can be large

for stiff problems.

In order to get the same accuracy for the stages when comparing (2.3)-complex-version and
(2.11) we get, by virtue of (2.8) and (2.13), that νT ' 3

2
νĀ. Here, νT and νĀ denote the number

of iterations with (2.11) and (2.3), respectively. For the s-stage Gauss method (s = 2, 4, 6, . . .)
we compare in Table 2.1 the computational cost of both iterations for achieving the same
accuracy. There, a derivative evaluation accounts 2m2 flops in the same way as accounts the
solution of two real triangular systems in LU form. Iter denotes the number of iterations
given, LS the number of m-dimensional linear systems, fn the number of derivatives and it
is assumed that Yn − Y (0)

n = O(hq). From this table it is clear that both iteration processes
reach the same accuracy (in terms of power of h) at the same costs. However, it should be
mentioned that the costs for the LU -factorizations have not been taken into account in Table 2.1.
Since the factorizations substantially contribute to the total costs of the methods (proportional
to the third power of the ODE dimension) we remark that (2.3) requires s/2 complex LU -
decompositions (resulting in 4sm3/3 flops), whereas (2.11) only needs the LU -factorization
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Table 2.1
Costs with Simplified Newton Iteration and (2.11) for the s-stage Gauss method (s even).

Iterative scheme Iter LS fn flops Accuracy

Simplified Newton Iter. ν sν/2 (Complex) sν 6sνm2 O(h3ν+q)

(2.11) 3ν/2 3sν/2 (Real) 3sν/2 6sνm2 O(h3ν+q)

of one real matrix (2m3/3 flops). It is to be expected that the iteration process (2.11) is
more efficient than the Simplified Newton Iteration, especially for medium to large dimensional
problems.

2.1 Global error analysis when µ iterations per integration step are given

An interesting issue is the analysis of the global errors when comparing both iterations ((2.3)
and (2.9)) for a fixed number of iterations µ per integration step. To be more precise, we will
be interested in the size of

εn := yn − yn
(µ), τn := h(y′n − y′n

(µ)
), n = 1, 2, . . . , N, (2.14)

where (yn, y
′
n) denotes the exact Runge-Kutta solution after n consecutive steps of size h =

(tend− t0)/N and (y(µ)
n , y′n

(µ)) stands for the numerical solution after n consecutive steps and µ
iterations per integration step. It will also be assumed that the same predictor is used on each
integration step to start the iterates, except possibly at the first step.

We need some extra notations to make the analysis. Thus, by considering we have selected
the iteration (2.9), Y (0)

n represents the initial guess for the stages in order to advance from

(tn, y
(µ)
n , y′n

(µ)) to (tn+1, y
(µ)
n+1, y

′
n+1

(µ)). Y (ν)
n (ν = 1, . . . , µ) denotes the ν-iterate, Y (∞)

n stands

for the exact solution of the stage equations D(Y, y(µ)
n , hy′n

(µ)) = 0 and Yn represents the exact
Runge-Kutta stages after n integration steps. It will be assumed that the initial guess is of
order q, i.e.

Y (∞)
n − Y (0)

n = (K(tn) +O(h))hq. (2.15)

Here Y (0)
n denotes an initial guess based in the information obtained at the previous step

(y
(µ)
n−1, y

′
n−1

(µ), Y
(µ)
n−1) and K(t) = O(1) is supposed to be a ”smooth” t-depending mapping (ms

vector). For instance, the natural starting algorithm, Y (0)
n := e⊗ y(µ)

n + h(c⊗ y′n
(µ)), is a second

order initial guess, since we have that, Y (∞)
n − Y (0)

n = ((A2 ⊗ I)F (e ⊗ y(µ)
n ) + O(h))h2, where

y(µ)
n = r∗y(µ)

n−1 + (bT A−1 ⊗ I)Y
(µ)
n−1, according to (2.5).
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With the notations above, from (2.14) and (2.5) we deduce that,

εn+1 = r∗εn + (bT A−1 ⊗ I)(Yn − Y (µ)
n )

τn+1 = r′εn + r∗τn + (bT A−2 ⊗ I)(Yn − Y (µ)
n ).

n = 0, 1, . . . (2.16)

Now, by splitting, Yn − Y (µ)
n = (Yn − Y (∞)

n ) + (Y (∞)
n − Y (µ)

n ), by virtue of D(Yn, yn, hy′n) =

D(Y (∞)
n , y(µ)

n , hy′n
(µ)) = 0, it follows after a direct calculation, assuming f suitably smooth, that

Yn − Y (∞)
n = (I + h2O(1))(e⊗ εn + c⊗ τn). (2.17)

By setting E(ν) := Y (∞)
n − Y (ν)

n , from (2.9) we get that

(I − h2(T ⊗ Jn))(−E(ν) + E(ν−1)) = D(Y (ν−1)
n , y(µ)

n , hy′n
(µ))−D(Y (∞)

n , y(µ)
n , hy′n

(µ)) =

(−I + h2(A2 ⊗ Jn) +O(h3))(−E(ν−1)), ν = 1, 2, . . . ,
provided that

Jn =
∂f

∂y
(tn, y

(µ)
n ) +O(h).

From here and taking into account (2.15) we arrive at

E(µ) = h2µ
(
(A2 − T )µ ⊗ (Jn)µ +O(h)

)
E(0) =

h2µ+q
(
((A2 − T )µ ⊗ (Jn)µ)K(tn) +O(h)

)
.

(2.18)

From (2.16) and bearing in mind (2.5), (2.17) and (2.18), we arrive at

εn+1 = (1 +O(h2))εn + (1 +O(h2))τn + h2µ+q
(
(bT A−1(A2 − T )µ ⊗ (Jn)µ)K(tn) +O(h)

)
,

τn+1 = (1 +O(h2))τn +O(h2)εn + h2µ+q
(
(bT A−2(A2 − T )µ ⊗ (Jn)µ)K(tn) +O(h)

)
,

n = 0, 1, 2 . . . , for each µ = 1, 2, . . .

(2.19)

From (2.19) it can be seen that

τn = h2µ+q−1
(
(bT A−2(A2 − T )µ ⊗ I)M(tn) +O(h)

)
, n = 0, 1 . . . , (2.20)

where M(tn) = h
∑n−1

j=0 (I ⊗ (Jj)
µ)K(tj) = O(1). Then, by requiring

0T = bT A−2(A2 − T ) = bT (I − A−2T ), (2.21)

we achieve, for µ ≥ 1, that

εn = yn − y(µ)
n = O(h2µ+q−1), h−1τn = y′n − y′n

(µ)
= O(h2µ+q−1), n = 0, 1, . . . , N. (2.22)
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Theorem 1 The global errors associated with (2.5) at the end point after N integration steps,
where µ iterates per step are carried out with (2.9) satisfying (2.21) and a fixed initial guess of
order q (see (2.15)), satisfy the relation (2.22) for h = (tend − t0)/N → 0+.

If (2.21) is violated, then only order 2µ + q − 2 can be guaranteed for the advancing solution.
On the other hand, a similar analysis to the previous one about the global convergence order
after µ iterations (per integration step) for the Simplified Newton Iteration (2.3) shows that
for nonlinear problems in general we get that,

Theorem 2 Under the assumptions of theorem 1, for the scheme (2.3)-(2.5) we have that,

yn − y(µ)
n = O(h3µ+q−2)

y′n − y′n
(µ) = O(h3µ+q−2)

n = 0, 1, . . . , N, (h → 0+). (2.23)

This implies that for µ = 1, both iteration processes ((2.3) and (2.11)) give the same accuracy
for the advancing solution (order q +1), but our iteration is quite cheaper. However, in practice
when integrating with RK-Nyström based codes, more than one iteration is currently performed
in most of the integration steps. In that case, theoretical comparisons among both iterative
schemes are shown in Table 2.1 for the s-stage stage Gauss methods (s even). From the results
in Table 2.1 and from the Theorems 1 and 2, it is not difficult to deduce that at the same
computational effort (without considering LU -factorizations), our iteration gains one order
more on the advancing solution than the simplified Newton Iteration. Observe that our iteration
has the additional advantage of requiring only one real LU -decomposition independently of the
stage’s number of the method. In section 5, the statements of the theorems 1 and 2 will be
numerically illustrated.

3 By selecting the iteration for the Gauss methods

We are interested in iterations of type (2.9) that can cope satisfactorily with general stiff non-
linear differential systems. Hence, these iterations should be also convergent for stiff linear
problems of the form, y′′(t) = Jy, J ∈ Rm,m, independently of the size of the eigenvalues of
J whenever they are non-positive. Thus, the iteration must be convergent on the linear test
equation

y′′(t) = −λ2y, λ ∈ R. (3.1)

Usually, the frequencies {λ} involved with the original linear system, have small amplitudes
when they are large and medium amplitudes when they are short (dominant frequencies).
Thus, it is vital for advancing the integration with no too small step-sizes, that the iteration
damps those large frequencies and that it possesses a short rate of convergence on the smaller
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(dominant) frequencies. In this way, a low number of iterations µ with (2.9) will allow to get a

very stable and approximate advancing solution (y(µ)
n , y′n

(µ)). By setting z = hλ and applying
the iteration (2.9) with Jn = −λ2, to the test (3.1), we get for the error in the iterates that

Yn − Y (ν)
n = N(z)(Yn − Y (ν−1)

n ) = N(z)ν(Yn − Y (0)
n ), ν = 1, 2 . . . , (3.2)

where N(z) := z2(I + z2T )−1(T − A2). It is clear that the convergence of (2.9) for all z is
equivalent to require that the spectral radius of N(z) satisfies ρ(N(z)) < 1, ∀z ∈ R.

In the construction of our iterations for the Gauss methods the condition (2.21) will be always
demanded. This implies that one eigenvalue of N(z) vanishes. Moreover, as said before, the
matrix T must have an one-point spectrum, σ(T ) = {γ}, γ > 0.

The two stage Gauss method (s = 2).

From the requirements above, the other eigenvalue of N(z) is given by

φ(z) = 1− det (I −N(z)) = 1− (det(I + z2T ))−1 det(I + z2A2). (3.3)

A straightforward calculation shows that (below, tr A2 denotes the trace of the matrix A2),

φ(z) =
z2(2γ − trA2) + z4(γ2 − (det A)2)

(1 + γz2)2
.

To increase the order at the origin z → 0, we must demand trA2 − 2γ = 0, but in that case
we have that φ(∞) = −3 and the stiff frequencies are not damped. In this way a compromise
between some damping on the whole real line (and specially at z = ∞, because of the high
frequencies) and a small value for δ := trA2−2γ should be searched. One option might be asking
for φ(∞) = 0. This implies that γ = det A = 1/12, δ = −1/12 and that φ1 := maxz∈R |φ(z)| =
0.25. Another option could be choosing γ so that g(γ) := maxz∈R |φ(z)| is minimum. In that
case, we have that γ∗ = 0.07644... and φ2 := g(γ∗) = 0.18... The maximum spectral radius
argument is favorable to the second option, but in that case we have that φ(∞) = −φ2, and in
most part of the real line the spectral radius for the second case is larger than for the first case,
also the difference φ1 − φ2 is relatively small. Moreover, for a fixed number of iterations, the
global errors (associated with high frequencies on linear problems) accumulated at the previous
step tn are more amplified when considering the second option. This fact has some importance
in the choice of high order predictors as it will be seen in the next section. These arguments
and practical reasons comparing both iterations on many test problems seem to indicate that
the first option performs at least as well as the second one in most problems and the first one
has the additional advantage of being more robust. In conclusion, we take γ = 1/12, this gives
a unique matrix T whose inverse matrix T−1 satisfies

bT (A−2 − T−1) = 0T , tr(T−1) = 2γ−1 = 24, det(T−1) = det A−2 = 122.
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Fig. 3.1. Spectral radius of N(z) for the s-stage Gauss methods (s = 2, 3, 4).
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The matrix T can be decomposed according to (2.10), and although such a decomposition is
not unique, we have taken that one requiring that S is an upper triangular matrix with ”1”
on its diagonal (for computational savings). Thus, L and S are respectively, the strictly lower
triangular part and the upper triangular part of the next matrix denoted by L ¢ S,

L ¢ S =




1 −7 + 4
√

3

(12 + 7
√

3)/6 1


 , γ = 1/12. (3.4)

The three stage Gauss method (s = 3).

In this case, the matrix T provides nine unknowns. The condition (2.21) involves three linear
equations and also implies a null eigenvalue for N(z). On the other hand, the requirement
σ(T ) = {γ} imposes three equations (one linear one and two nonlinear ones) and supplies a
new parameter γ. The approach we have followed consists of demanding that the matrix N(z)
has just one non-vanishing eigenvalue, φ(z). In that case φ(z) is given by (3.3).

As in the two-stage case, by requiring φ(∞) = 0, we get that γ = (det A)2/3 = (1/120)2/3 =
0.041103534... Moreover, the condition (2.21) is equivalent to 0T = bT N(∞), and the latter is
equivalent to 0T = bT (A−2 − T−1). Thus, by requiring the new condition 0T = eT

3 N(∞), eT
3 =

(0, 0, 1), which is equivalent to 0T = eT
3 (A−2 − T−1), it follows that N(z) has a null eigenvalue

of multiplicity two (by virtue of that A2 − T has two left eigenvectors corresponding to the
null eigenvalue) and the other eigenvalue is given by φ(z) in (3.3). This choice for T−1 has the
advantage that its last row coincides with that one of A−2, and this fact implies small errors
for the iterates for the third component Y

(ν)
n,3 (ν = 1, 2, . . .), mainly when high frequencies are

considered (z →∞). It must be also observed that Yn,3 is the farthest stage to be approached
with initial guesses from the previous step, thus a null damping for the iterate errors on this
stage is important. With these requirements (nine equations and nine unknowns) the matrix T
is univocally determined. Again, we omit writing T and we give its L ¢ S-decomposition with
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16 significant figures,

L ¢ S =




1 −0.34134805819933375 0.08060287745941966

3.0972763877611617 1 0.09100037186032114

−6.381775393482425 4.3129085842580614 1




(3.5)

The four stage Gauss method (s = 4).

In this case and by giving similar arguments as those ones for the cases s = 2, 3, we require the
following 16 equations for the matrix T−1 (16 unknowns).

bT (A−2 − T−1) = 0T , σ(T−1) = {γ−1}, eT
3 (A−2 − T−1) = 0T , eT

4 (A−2 − T−1) = 0T . (3.6)

Here, e3 and e4 denote the third and fourth vectors of the canonical basis of R4 respectively
and the value for γ is obtained from demanding that the non-vanishing eigenvalue of N(z)

satisfies, φ(∞) = 0. This implies that γ = (det A)1/2 =

√
105

420
= 0.0243975018.... From the

requirements in (3.6) a unique real matrix T is obtained. This matrix can be also decomposed
in the L ¢ S-form mentioned before as




1 −0.6259618003648055 0.28004508015579187 −0.026021682011884171

2.8903693478178977 1 0.04262904477976469 0.04746745319522649

−3.880435892734769 3.1457588737925907 1 0.16883422865076189

10.056003837018828 −10.386602189612067 5.349223474607041 1




In Figure 3.1, the plot of the non-vanishing eigenvalue of N(z) (φ(z) in (3.3)) is displayed for
each s-stage Gauss method with s = 2, 3, 4. It can be appreciated that the iteration is always
convergent and that the speed of convergence slightly decreases when the number of stages s is
increased. It is also interesting to consider the averaged rate of convergence for a given iteration

defined by van der Houwen and de Swart [16, p.45] as, ρj(z) := j

√
‖ N(z)j ‖∞, j = 1, 2, . . .. For

our iteration (2.11), we have that limj→∞ ρj(z) = ρ(N(z)) = |φ(z)|. In [16] it is remarked the
importance of having ρj(z) ' ρ(N(z)) for small values of j, since this would imply an optimal
convergence rate (closed to the spectral radius of N(z)) from the first iterates. In Table 3.1 we
have picked up the numbers ρ∗j = maxz∈R ρj(z) and ρ′j ≡ ρj(∞) for the cases j = 1, 2, 3, 4, and
s = 2, 3, 4.
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Table 3.1
Averaged rates of convergence for the Gauss methods.

j 2-stage Gauss 3-stage Gauss 4-stage Gauss

1 ρ∗j = 0.577; ρ′j = 0.577 ρ∗j = 1.72; ρ′j = 1.72 ρ∗j = 3.72; ρ′j = 3.72

2 ρ∗j = 0.280; ρ′j = 0 ρ∗j = 0.830; ρ′j = 0 ρ∗j = 1.17; ρ′j = 0

3 ρ∗j = 0.261; ρ′j = 0 ρ∗j = 0.675; ρ′j = 0 ρ∗j = 0.881; ρ′j = 0

4 ρ∗j = 0.256; ρ′j = 0 ρ∗j = 0.613; ρ′j = 0 ρ∗j = 0.803; ρ′j = 0

4 Initial guesses for the s-stage Gauss methods (s ≥ 2)

The order conditions to achieve order q for predictors (denoted by (Y
(0)
n,i )),

Yn,i − Y
(0)
n,i = O(hq), i = 1, . . . , s, h → 0,

where Y
(0)
n,i makes use of the information from the previous step tn−1

h−→ tn (the next step is

tn → tn+1 = tn + τh), and having the form

Y
(0)
n,i = aiyn−1 + hdiy

′
n−1 +

s∑

j=1

bijYn−1,j, i = 1, . . . , s (4.1)

can be deduced by using the special Nyström tree theory (see e.g. [12, Ch. II.14]). In this case,
the order conditions are given by the following linear equations:

Order 1 iff ai +
∑s

j=1 bij = 1, i = 1, . . . , s.

Order 2 iff (Order 1 and di +
s∑

j=1

bijcj = 1 + τci, i = 1, . . . , s).

Next, we use the C(s)-simplifying order condition, which is fulfilled for the s-stage Gauss
method (below, power on a vector means power on each component),

C(s) : Acj−1 =
1

j
cj, j = 1, . . . , s.

Order 3 (for s ≥ 2) iff (Order 2 and
s∑

j=1

bij(cj)
2 = (1 + τci)

2, i = 1, . . . , s).

Order 4 (for s ≥ 2) iff (Order 3 and
s∑

j=1

bijκj =
1

6

(
(1 + τci)

3 − (τci)
3
)

+ κiτ
3, i = 1, . . . , s, where κ = (κi) = A2c).

For s ≥ 3 stages, the latter condition is equivalent to
s∑

j=1

bij(cj)
3 = (1 + τci)

3, i = 1, . . . , s.

Order 5 (for s ≥ 3 stages) iff (Order 4 and
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s∑

j=1

bijζj =
1

12

(
(1 + τci)

4 − (τci)
4
)

+ ζiτ
4, i = 1, . . . , s, where ζ = (ζi) = A2c2).

It is very interesting to analyze the effect of amplification of errors through the starting al-
gorithms when high frequencies are considered. Thus, for linear problems y′′(t) = Jy + g(t),
by setting εn−1 := yn−1 − ŷn−1, ωn−1 := hy′n−1 − hŷ′n−1, and denoting respectively by y(t)
and ŷ(t) two nearby local solutions passing through (tn−1, yn−1, y

′
n−1) and (tn−1, ŷn−1, ŷ

′
n−1), it

follows that its difference ξ(t) = y(t)− ŷ(t) satisfies the linear system

ξ′′(t) = Jξ(t), ξ(tn−1) = εn−1, ξ′(tn−1) = h−1ωn−1.

From here, it is clear that the behavior of an initial guess on the simple test

y′′(t) = −λ2y, y(tn−1) = εn−1, y′(tn−1) = h−1ωn−1, (4.2)

is significant in order to know how the accumulated errors (εn−1, ωn−1) at the step tn−1 are
propagated, specially in the case when high frequencies (λ >> 1) are present.

By applying the s-stage Gauss method to the test (4.2) by putting z = λh and making z →∞,
from (2.2) and (2.5) after a straightforward calculation we get that

Yn−1 = Yn = 0 ∈ Rs, yn = r∗εn−1 and hy′n = r′εn−1 + r∗ωn−1. (4.3)

Then, for the starting algorithm (4.1), by letting z →∞, it follows that

Y
(0)
n,i = aiεn−1 + diωn−1, i = 1, . . . , s. (4.4)

Since the error is given by Y (0)
n − Yn = Y (0)

n , then for each order q = 1, 2, . . . , we will select a
predictor with amplification factors (vectors a = (ai) and d = (di)) of size as small as possible.

Initial guesses of orders q = 1, 2, . . . , s, with 0-amplification factor at z = ∞ are respectively
given by (interpolating polynomials on nearby stages of the previous integration step),

Y
(0),q
n,i = Ps,q(1 + τci), i = 1, . . . , s, q = 1, . . . , s, (4.5)

where Ps,q(t) is a polynomial of degree q − 1 at most, satisfying

Ps,q(cs+1−i) = Yn−1,s+1−i, i = 1, . . . , q. (4.6)

The unique predictor of order s + 1 satisfying dT = (di) = 0T , is given by

Y
(0),s+1
n,i = Ps,s+1(1 + τci), Ps,s+1(0) = yn−1, Ps,s+1(ci) = Yn−1,i, (i = 1, . . . , s). (4.7)
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Table 4.1
y-component at tend = 4 after N = 40 steps of size h = 0.1, with our scheme your and also with Simplified Newton Iteration ysni

by making µ iterations per step and starting algorithm Y
(0),q
n,i .

2-stage Gauss Y
(0),1
n,i Y

(0),2
n,i Y

(0),3
n,i Y

(0),4
n,i

µ = 1
your = −2.27e-9

ysni = 1.09e-8

your = 5.12e+2

ysni = 1.10e-8

your = −4.61e+22

ysni = 1.76e-3

your = −1.16e+33

ysni = 1.88e+7

µ = 2
your = 8.11e-9

ysni = 1.00e-8

your = 8.33e-9

ysni = 1.00e-8

your = −2.03e-13

ysni = 1.94e-8

your = 1.09e+0

ysni = 2.91e-5

µ = 3
your = 1.10e-8

ysni = 9.96e-9

your = 1.00e-8

ysni = 9.96e-9

your = 5.02e-8

ysni = 1.03e-8

your = 6.52e-3

ysni = 2.30e-8

Here, Ps,s+1(t) is a polynomial of degree s at most.

For the cases s = 2 and s = 3, predictors (Y
(0),s+2
n,i ) of order s + 2 can be easily computed from

the linear equations indicated at the beginning of this section. Moreover, predictors of higher
orders can be calculated by using the special Nyström tree theory and the C(s)-condition.

In order to illustrate a potential danger associated with high order predictors, we have computed
the amplification factors for the 2-stage Gauss method and its natural fourth order starting
algorithm (mentioned before). The values for a2(τ) and d2(τ) for several step-size ratios τ =
1, 2, 3, are given next, these τ -values can be representative for cases in which the step-size
increases in the integration,

a2(1) = 31.86, d2(1) = 3.732, a2(2) = 131.4, d2(2) = 17.66, a2(3) = 338.3, d2(3) = 48.25.

From this circumstance, we can say that the amplitudes associated with the high frequencies
will be not damped in very few iterations unless the spectral radius of the matrix N(∞) (see
section 3) is fairly small.

Table 4.1 illustrates, by considering the simple problem

y′′(t) = −η(1 + t)−1y, y(0) = 10−8, y′(0) = 0, η = 1010, t ∈ [0, 4],

the negative influence of large amplification factors (for the predictors) on the accuracy achieved
at the end point when giving a small number of iterations per integration step with a prefixed
iterative scheme. There, the integrations were carried out by using the two stage Gauss method
and the iterations employed were the Simplified Newton Iteration and our iteration (see (2.11)
and (3.4)) respectively. Moreover, the Jacobian matrix and the LU -factorization were updated

at each integration step. For the first step, the predictor taken was Y
(0)
0,i = y0 + cihy′0 (i = 1, 2),

and µ + 1 iterations were performed (and µ iterations for subsequent steps).
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4.1 VOS: Variable Order Strategy to select initial guesses

From the previous study we cannot infer that the starting algorithms of higher order are the
best. Thus, to achieve a balance between high order and small amplification factors for high
frequencies, the following strategy can be adopted (we refer to it as VOS) to select the best
initial guess at a current step. This strategy has proved to be very efficient for first order
stiff differential systems [9, p. 89-93]. The idea is to choose the predictor having the smallest

error (in some norm). Since the starting algorithms above (Y
(0),q
n,i ), have consecutive orders

q = 1, 2, . . . , qmax, the error of Y
(0),q
n,i is computed from

E
(0),q
n,i =‖ Y

(0),q
n,i − Y

(0),q+1
n,i ‖, (i = 1, .., s), (q = 1, .., qmax − 1).

The selection can be done as follows: for q = 1, 2, . . . , qmax−1, take the first q (and the predictor

Y
(0),q
n,i ; i = 1, . . . , s) such that

E(0),q+1
n,s ≥ κE(0),q

n,s , typically κ = 0.5. (4.8)

If (4.8) is not satisfied for any q = 1, 2, . . . , qmax − 1, then q = qmax is chosen (the highest
order predictor) only when E(0),qmax

n,s ≤ µκE(0),qmax−1
n,s (µ = 0.2 gives good results). In other case,

q = qmax − 1 is taken.

Observe that the error in (4.8) is only measured on the s-stage, since this stage possibly has
the largest error (it is the farthest away stage to be interpolated from the previous step).
Moreover, although there is not an error estimator for the highest order starting algorithm,
this one will be selected when its difference with the preceding predictor is not significant. It
must be observed that for two given guesses having similar errors the lower order one will be
preferred (as indicated in (4.8)) since it has smaller amplification factors. For the first step we
can adopt a similar strategy, but taking as starting algorithms:

Y
(0),1
0,i = y0 (order 1), Y

(0),2
0,i = y0 + h0ciy

′
0 (order 2), and

Y
(0),3
0,i = y0 + h0ciy

′
0 + 2−1(h0ci)

2f(t0, y0) (order 3), for i = 1, . . . , s.

5 A few more numerical experiments

This section is devoted to illustrate the theory on previous sections and also to make some com-
parisons among the Simplified Newton Iteration and our iterative scheme, when both iterations
are implemented on the Gauss methods by using a fixed step-size strategy and by evaluating
the Jacobian matrix (and updating the corresponding LU -factorization) at each integration
step. We have considered three test problems often appearing in the related literature,

Problem 1[7, p.201], y′′(t) + sinh y(t) = 0, y(0) = 1, y′(0) = 0, t ∈ [0, 4].
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Problem 2 [11, p.10-12] is the outer solar system (of dimension m = 18), t ∈ [0, 500000]. In
this case the smallest y-component at the end point is y4 = −5.56.. and the biggest one is
y14 = 38.6... . This is a non-stiff problem on the whole integration interval and, for instance,
the eigenvalues (λ) of the Jacobian matrix J0 = ∂f/∂y(t0, y0) at the initial point are very small.
A numerical calculation shows that all of them are real and satisfy |λ| ≤ 10−5.

Problem 3 [14, p.610] is the one-dimensional wave equation with friction given by,

utt = gd uxx + g2u3/(C4d2), 0 < x < l, t ∈ [0, 10],

ux(t, 0) = ux(t, l) = 0, u(0, x) = sin(l−1πx), ut(0, x) = −l−1π
√

gd cos (l−1πx),

where d = d(x) = d0(2 + cos(2l−1πx)), g is the acceleration of gravity, and C is the Chezy
coefficient. Fourth order symmetric differences have been used to discretize uxx(x, t) on the x-
variable at xj = j∆x, j = 2, 3, . . . , m−1, (∆x = l/(m+1)) and also fourth order differences to
discretize on the x1-line (involving u-values from x0 up to x5) and on xm-line. The boundary con-
ditions, ux(t, 0) and ux(t, l), are respectively discretized by using fifth order forward-backward
differences in order to keep the disctretization errors of the same order, when passing from
the partial differential problem to the second order ordinary differential system. The solution
components u0 and um+1 are eliminated from the boundary conditions (ux(t, 0) = ux(t, l) = 0),
hence this yields a differential system of dimension m. The parameters we have taken are,

m = 41, l = 100, d0 = 10, C = 50, g = 9.81.

This problem is medium-stiff, since the 41 eigenvalues of J0 = ∂f/∂y(t0, y0) are real and they
are almost uniformly distributed on the interval [−276.3... , 0]. There is not much change when
the Jacobian matrix is evaluated on other (t, y(t))-points with t > 0. At t = 10, the smallest
solution component is y39 = 0.0550... and the biggest one is y1 = 1.956... . In all problems
the errors (absolute errors are displayed in each table) were measured by using the weighted
Euclidean norm ‖ x ‖:= m−1/2 ‖ x ‖2, x ∈ Rm.

The numbers exposed in Table 5.1 and in Table 5.2, denoted by p(h) and p′(h) respectively, are
computed by global extrapolation as follows,

p(h) =
ln(e(h/2))− ln(e(h))

ln 2
, p′(h) =

ln(e′(h/2))− ln(e′(h))

ln 2
,

where e(h) =‖ yRK(tend, h) − y
(µ)
N ‖, e′(h) =‖ y′RK(tend, h) − y′(µ)

N ‖, and yRK(tend, h) and
y′RK(tend, h) stand for the exact two-stage Gauss solution at the end point after N steps of size

h = tend/N and {y(µ)
n , y′(µ)

n } (n = 0, 1, . . . , N) denote the advancing solutions after n steps and

µ iterations per integration step. The predictors used were those ones designated by (Y
(0),q
n,i ),

which have order q = 1, 2, 3, 4, as it was indicated in section 4. In brackets we have included the
errors e(h) and e′(h). For the first step the predictor used in all cases was Y

(0)
0 = e⊗ y0 (order

one) and two iterations more than for each coming step were performed. The results in Table
5.1 nicely confirm the statement of Theorem 1. On the other hand, the results in Table 5.2 also
fit well with the statement of Theorem 2, which applies to the Simplified Newton Iteration.
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In order to gain more insight about the numerical behavior of several iterations on practical
problems, we have integrated problem 2 and problem 3, by using the s-stage Gauss methods
(s = 2, 3, 4) and giving a fixed number of iterations µ per integration step, except at the first
step where µ+2 iterations were carried and the predictor Y0 = e⊗ y0 was taken. We have used
the variable order strategy (VOS) for predictors when either the Simplified Newton Iteration
or our iteration was implemented. In the case of the two stage Gauss method we have also
included the results obtained by using the Cooper-Butcher iteration as it was customized by
Gladwell and Thomas in [7, p.191-194] with the predictors indicated therein [7, p.198-199] (and
also giving two iterations more at the first step).

As for the two stage Gauss method, it can be appreciated in Table 5.3 and in Table 5.5 that
our iteration (2.11)-(3.4) behaves as well as the Simplified Newton Iteration even at the same
number of iterations, i.e. they practically give similar global errors (denoted by ε) at the end
point. Also both iterations practically take the same predictors, in brackets we have displayed
the number of times that each predictor was chosen, thus [0, 0, 187, 12] means that the predictors
of order 1 and 2 were never chosen that the predictor of order three was taken 187 times and
the predictor of order four was employed 12 times. It is also clearly appreciated in Table
5.3 (problem 2 is non-stiff) that the Cooper-Butcher iteration needs more iterations than our
iterative scheme to achieve the same accuracy, this can be explained from the order theory in
section 2, because the Cooper-Butcher iteration does not gain any order on h with the iterates.
On the problem 3 (stiff case) the Cooper-Butcher iteration behaves in a similar way as ours.
We can also see that the VOS strategy works nicely well on both problems and that the best
predictors for non-stiff problems (problem 2) are currently the highest order ones, however when
the problem becomes more stiff (problem 3) medium order predictors are preferred.

As for the three stage Gauss method and the four stage Gauss method, when comparing our
iteration (2.11) (see also section 3) with the Simplified Newton Iteration it can be appreciated
in Table 5.4 and in Table 5.6 that both iterations practically achieve the same accuracy at the
same number of iterations. In the worst case, our iteration needs one iteration more than the
Simplified Newton Iteration to get similar global errors. This gives a great advantage to our
iteration when comparing the computational efforts. It is also shown that when both iterations
are implemented with the VOS strategy, they practically take the same predictors and in the
case of stiff problems (problem 3) the medium order predictors are preferred, observe that the
highest order predictor was practically never chosen. Conversely, for the non-stiff case (problem
2) the higher order predictors are taken in most of times. From these tables it can be seen, as
it is expected, the increasing accuracy of the s-stage method when s grows and the iteration
process converges (µ = 4, 5 iterations). However, for µ = 2, 3 iterations per integration step,
the accuracy is practically independent of the stage number s = 2, 3, 4.

From these results and from other numerical experiments not presented here, we conclude that
the iteration given by (2.11) with the matrices L, S and the parameter γ = (det A)2/s chosen
as indicated in section 3, seems to be a very competitive alternative to the Simplified Newton
Iteration at least for s = 2, 3, 4 stages, when it is implemented on Gauss methods and possibly
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Table 5.1
Orders and errors for the advancing solution: p(h)[e(h)], p′(h)[e′(h)], in Problem 1 (tend = 4, h = 0.4), with Our iterative scheme

(µ iterations per integration step), 2-stage Gauss method and starting algorithm Y
(0),q
n,i .

2-stage Gauss Y
(0),1
n,i Y

(0),2
n,i Y

(0),3
n,i Y

(0),4
n,i

µ = 1
p = 1.9[4.6e-2]

p′ = 2.2[2.7e-2]

p = 2.7[5.9e-3]

p′ = 3.6[3.1e-3]

p = 3.8[3.1e-3]

p′ = 4.0[2.4e-3]

p = 5.1[2.3e-4]

p′ = 6.6[1.4e-4]

µ = 2
p = 3.9[1.1e-3]

p′ = 4.0[7.5e-4]

p = 5.1[2.3e-4]

p′ = 8.6[6.1e-5]

p = 5.7[4.3e-5]

p′ = 6.0[3.7e-5]

p = 7.1[4.3e-6]

p′ = 9.2[1.6e-6]

µ = 3
p = 5.8[1.8e-5]

p′ = 6.1[1.3e-5]

p = 7.1[4.7e-6]

p′ = 9.4[1.1e-6]

p = 7.6[6.9e-7]

p′ = 8.0[6.4e-7]

p = 9.1[8.3e-8]

p′ = 10.5[2.9e-8]

Table 5.2
Orders and errors for the advancing solution: p(h)[e(h)], p′(h)[e′(h)], in Problem 1 (tend = 4, h = 0.4), with the Simplified Newton

Iteration (µ iterations per integration step), the two-stage Gauss method and starting algorithm Y
(0),q
n,i .

2-stage Gauss Y
(0),1
n,i Y

(0),2
n,i Y

(0),3
n,i Y

(0),4
n,i

µ = 1
p = 1.8[9.2e-3]

p′ = 2.2[1.4e-2]

p = 4.7[4.1e-3]

p′ = 2.6[1.1e-2]

p = 3.9[1.6e-3]

p′ = 3.8[1.4e-3]

p = 5.0[8.8e-5]

p′ = 5.2[3.4e-4]

µ = 2
p = 8.2[6.6e-7]

p′ = 5.0[1.8e-5]

p = 5.6[1.2e-5]

p′ = 5.9[1.6e-5]

p = 8.2[8.5e-7]

p′ = 6.7[2.3e-6]

p = 7.6[1.3e-7]

p′ = 8.4[3.1e-7]

µ = 3
p = 8.7[1.2e-9]

p′ = 9.1[2.5e-9]

p = 14.6[1.1e-8]

p′ = 8.7[8.2e-9]

p = 10.1[3.6e-10]

p′ = 10.0[2.7e-10]

p = 10.5[2.1e-11]

p′ = 10.9[2.6e-11]

Table 5.3
Two stage Gauss method on problem 2. Global errors on the y-component at tend = 5 · 105 (h = 125), by using our iteration,
the Simplified Newton Iteration and the Cooper-Butcher iteration. µ iterations per step were carried out and the variable order
strategy VOS for predictors was used (in brackets the number of times that each starting algorithm was chosen)

2-stage Gauss Our iteration Simp. Newt. Iter. Cooper-Butcher Iter.

µ = 1 ε = 2.26e+1[0, 0, 0, 3999] ε = 2.23e+1[0, 0, 0, 3999] ε = 2.85e+1

µ = 2 ε = 1.89-1[0, 0, 0, 3999] ε = 1.78e-2[0, 0, 0, 3999] ε = 2.92e+1

µ = 3 ε = 1.60e-2[0, 0, 0, 3999] ε = 1.62e-2[0, 0, 0, 3999] ε = 2.37e+0

µ = 4 ε = 1.50e-2[0, 0, 0, 3999] ε = 1.50e-2[0, 0, 0, 3999] ε = 4.69e-1

on any (high order) highly implicit Runge-Kutta-Nyström method. It is also remarkable that
the variable order strategy for predictors (VOS) seems to be more attractive than any prefixed-
predictor option, since the former alternative is more flexible and take the most convenient
guess on the current step. For the Lobatto IIIA methods an iteration of type (2.9) can be
adapted, by making some minor modifications. Observe that for those methods the first stage
is explicit, hence the matrix T in (2.9) must be adjusted for the implicit stages only.
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Table 5.4
Three-stage Gauss method and four-stage Gauss method on problem 2. Global errors on the y-component at tend = 5·105 (h = 125),
with our iteration and with the Simplified Newton Iteration, by making µ iterations per step and the variable order strategy for
predictors (in brackets the number of times that each starting algorithm was chosen)

3-stage Gauss Our iteration Simp. Newt. Iter.

µ = 1 ε = 9.90e+0[0, 0, 0, 3527, 472] ε = 3.48e+0[0, 0, 0, 3316, 683]

µ = 2 ε = 8.29e-2[0, 0, 0, 2635, 1364] ε = 5.69e-3[0, 0, 0, 2632, 1367]

µ = 3 ε = 5.78e-4[0, 0, 0, 2630, 1369] ε = 4.11e-4[0, 0, 0, 2630, 1369]

µ = 4 ε = 4.87e-6[0, 0, 0, 2630, 1369] ε = 3.10e-6[0, 0, 0, 2630, 1369]

µ = 5 ε = 2.93e-6[0, 0, 0, 2630, 1369] ε = 2.94e-6[0, 0, 0, 2630, 1369]

4-stage Gauss Our iteration Simp. Newt. Iter.

µ = 1 ε = 1.96e+1[0, 0, 0, 498, 3501] ε = 1.74e+1[0, 0, 0, 436, 3563]

µ = 2 ε = 9.23e-3[0, 0, 0, 535, 3464] ε = 4.65e-3[0, 0, 0, 535, 3464]

µ = 3 ε = 1.75e-4[0, 0, 0, 535, 3464] ε = 1.46e-4[0, 0, 0, 535, 3464]

µ = 4 ε = 2.69e-7[0, 0, 0, 535, 3464] ε = 4.84e-8[0, 0, 0, 535, 3464]

µ = 5 ε = 2.07e-8[0, 0, 0, 535, 3464] ε = 4.01e-8[0, 0, 0, 535, 3464]

Table 5.5
Two-stage Gauss method on problem 3. Global errors on the y-component at tend = 10 (h = 0.05), with our iteration, with the
Simplified Newton Iteration and with the Cooper-Butcher iteration, by making µ iterations per step and the variable order strategy
for predictors (in brackets the number of times that each starting algorithm was chosen)

2-stage Gauss Our iteration Simp. Newt. Iter. Cooper-Butcher Iter.

µ = 1 ε = 3.65e-3[0, 0, 187, 12] ε = 3.40e-3[0, 0, 176, 23] ε = 4.92e-3

µ = 2 ε = 1.22e-4[0, 0, 161, 38] ε = 4.66e-5[0, 0, 158, 41] ε = 2.22e-4

µ = 3 ε = 2.20e-5[0, 0, 158, 41] ε = 1.81e-5[0, 0, 158, 41] ε = 2.18e-5

µ = 4 ε = 1.85e-5[0, 0, 158, 41] ε = 1.83e-5[0, 0, 158, 41] ε = 1.96e-5
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