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This paper is concerned with the local error estimation in the numerical integration of stiff systems
of ordinary differential equations by means of Runge–Kutta methods. With implicit Runge–
Kutta methods it is often difficult to embed a local error estimate with the appropriate order
and stability properties. In this paper a local error estimation based on the information of the
last two integration steps (that are supposed to have the same steplength) is proposed. It is
shown that this technique, applied to Radau IIA methods, let us get estimators with proper order
and stability properties. Numerical examples showing that the proposed estimation improves the
efficiency of the integration codes are presented.
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1. INTRODUCTION.

Let us consider a stiff system of ordinary differential equations

y′ = f(t, y), y(0) = y0 ∈ Rm, t ≥ 0.

Adaptive codes for the numerical solution of differential equations usually control
the integration step so that a local error estimate is maintained below a given error
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tolerance. With Runge–Kutta methods

(1)
Yn,i = yn + h

∑s
j=1 aijf(tn + cjh, Yn,j) (i = 1, . . . , s),

yn+1 = yn + h
∑s

i=1 bif(tn + cih, Yn,i),

the estimator is commonly based on an embedded formula

(2) ŷn+1 = yn + h

s∑

i=1

b̂if(tn + cih, Yn,i),

where the approximations yn+1 and ŷn+1 have different orders and the estimator is
then given by the difference Est = yn+1 − ŷn+1.

When the RK method is fully implicit with high order of accuracy, the natural
embedded formula has its order seriously limited unless some additional information
is supplied. Thus, for example, if we consider the fifth–order Radau IIA method,
since it has three internal stages, any embedded formula (2) can have at most order
2 and this implies that the stepsize will be controlled in practice by the error of the
formula of order 2. In general, for s-stage collocation methods such as Radau IIA,
Gauss, Lobatto IIIC or Lobatto IIIA, the embedded methods can attain at most
order s− 1.

With these type of estimators, the stepsize is controlled by the error of a method
of order s− 1, while the error of the advancing solution can have order 2s, 2s− 1,
2s − 2, . . .. Then, as the tolerance gets smaller, the lower order error estimate
gives an overestimated error which makes the code take steps smaller than those
required by the advancing formula. In the case of explicit methods such a situation
will result in an over accurate solution, with higher cost, as if we had reduced the
error tolerance. However, with implicit methods, the effect of this overestimated
error is a bit more complicated.

In implicit methods applied to stiff systems, the stage equations are solved by
some Newton type iterative scheme that gives successive approximations Y

(k)
n,i to

the internal stages Yn,i. The scheme is typically stopped when the distance between
two consecutive approximations satisfies

‖Y (k)
n,i − Y

(k−1)
n,i ‖ ≤ c Tol, i = 1, . . . , s.

The constant c is a safety coefficient that preserve the final solution of being badly
affected by the error in the solution of the implicit equations, and for example in
RADAU5 code (see [7], Chap. IV.8) takes a value ranging from 0.1 to 0.01. The
approximation yn+1 and the estimator are computed from these last values Y

(k)
n,i

and the step is accepted if

‖ Est ‖≤ Tol.

Let us suppose now that the estimator is overestimating the actual error, that
is, ‖ Est ‖>> Error. This makes the code take stepsizes smaller than those
really needed to get Error ≤ Tol. However, these smaller stepsizes might not
imply smaller final errors because these errors are also affected by the error in
the iterations. Thus, close to c Tol final errors are expected independently of the
stepsize taken.

In RADAU5, Hairer and Wanner [7], Chap. IV.8, consider an embedded method
of the form (a similar error estimate is used in [8] for higher order Radau IIA
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methods)

ŷn+1 = yn + h

3∑

i=1

b̂if(tn + cih, Yn,i) + hb0f(tn, yn),

that can have order three (observe that f(tn, yn) does not correspond to any of
the three stages of the method). However, this approach is unsatisfactory because
there is not enough information to form a result of order more comparable to the
basic formula. Moreover, the stability of the embedded formula is not satisfactory,
so they have to correct the estimator as proposed by Shampine and Baca [9], using
finally

Est = (I − hγJ)−1(yn+1 − ŷn+1).

The matrix (I − hγJ)−1 is available and factored from the Newton iteration used
to solve the internal stages Yn,i and the estimator only requires the solution of the
corresponding triangular linear systems.

De Swart and Söderlind in [10] propose an improved estimator, theoretically
justified,

Est = (I − hγJ)−1h

(
s∑

i=1

(bi − b̂i)f(tn + cihn, Yi)− γf(tn+1, yn+1)− b̂0f(tn, yn)

)

where the coefficient b̂0 is chosen so that the error estimate does not underestimate
the actual error in some particular conditions. For the three-stage Radau IIA
formula this error estimate is similar to the one by Hairer and Wanner [7] except
by the choice of the free parameter b̂0. The authors show that this new estimator
provides a better agreement between actual and estimated errors.

In both cases the estimators have some limitations. On one hand, they require
the existence of a previously factored matrix (I − hγJ). In the case of Radau IIA
with 4 stages, the matrix A does not have real eigenvalues and the solution of the
implicit stage equations can be reduced to two block of complex systems. Then,
there are not any pre–factored matrix to be used in the estimator. On the other
hand, the estimators are also based on the additional evaluation f(tn, yn). However
there are methods such as Lobatto IIIA for which f(tn, yn) is in fact one of the
stages and therefore this kind of error estimation gives no advantage.

A classic technique for estimating the local error is the extrapolation technique.
It consists in giving, after two consecutive steps with the same stepsize, a double
step. Then, the error is estimated by a linear combination of the two approxi-
mations to the solution at tn+2. This technique gives very good results, but has
the inconvenient of the computational cost implied by the double step (the matrix
factorization plus the solution of some triangular linear systems per iteration).

In this paper we consider the construction of local error estimators based, like
extrapolation, on two consecutive steps, using the information along these two steps
to get an embedded formula with order as high as possible. Thus, let us suppose that
we have advanced from tn → tn+1 = tn +h and next from tn+1 → tn+2 = tn+1 +h.
We will consider an embedded formula of the following type

(3) ŷn+2 = yn + h

s∑

j=1

[βjf(tn + cjh, Yn,j) + γjf(tn+1 + cjh, Yn+1,j)] ,
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where βj and γj are constants that will be determined taking into account the
accuracy and stability of ŷn+2. This estimator has practically null computational
cost. It is important to notice that in practice the evaluation of derivative functions
in (3) can be avoided by replacing the derivative functions through the Runge–Kutta
stage equations, obtaining a more stable formula for computational purposes.

We must mention that the proposed approach has some disadvantages. Thus, a
failed step implies that we must reject two steps. On the other hand, since the code
is forced to take two consecutive steps with the same size, the stepsize is adjusted
less often, and this can imply a losing of efficiency in some circumstances. These
drawbacks can be overcame by extending our technique so that an error estimate
can be obtained from two consecutive, non equal, steps. In this case the estimator
will depend on the stepsize ratio and some modification to the stepsize change
formula must be done. Some research in this direction is being carried out, but
in this paper, for simplicity, we have limited our study to the case of two equal
consecutive steps.

Error estimators based on two or more consecutive steps have been also consid-
ered in [4] and [3] for explicit methods and in [1] for Singly–Implicit Runge–Kutta
methods.

Next, we briefly outline the rest of the paper. In section 2 we give some order
results for two–step Runge–Kutta methods. In section 3 we obtain two–step error
estimators for Radau IIA methods with 3, 4 and 5 stages and finally in section 4
we present some numerical experiments showing the performance of the proposed
estimates.

2. ORDER RESULTS FOR TWO–STEP EMBEDDED METHODS.

In this section we study the maximum attainable order for the embedded methods
introduced in the previous section, based on the information of two consecutive
steps.

2.1 General order results

Let us suppose that the Runge–Kutta method satisfies the simplifying conditions

(4)
C(q) : Acj−1 = cj/j, j = 1 . . . , q
B(q) : bT cj−1 = 1/j, j = 1 . . . , q

Let T denote the set of unlabeled rooted trees, τ ∈ T a rooted tree and τ0 the tree
with only one vertex (the only tree with order 1). Following the notations in [2], a
tree τ with order ρ(τ) > 1 can be written τ = [τ ′1, . . . , τ

′
k] where τ ′i are the subtrees

of τ that attached to the root give τ .
It is easy to see that the method reaches order q + 1 if and only if the order

condition for the tree τq = [τ0, . . . , τ0] = [τ q
0 ] is fulfilled. Then, order q + 2 is

attained if in addition the order conditions associated to the trees τq+1 and [τq] are
satisfied. The order q + 3 demands the order conditions on these trees and also on
τq+2, [τq+1], [τq, τ0] and [[τq]]. We are interested in characterizing the subset STq

of the tree set T such that for any r ≥ 1

order q + r ⇐⇒ bT Φ(τ) = 1/γ(τ),∀τ ∈ STq with ρ(τ) ≤ q + r
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Definition 1. We will say that τ ′ is a descendant of τ if τ ′ ≡ τ or well τ ′ is a
subtree of τ or it is a subtree of a subtree of τ and so on.

Example 1. The tree τq is a descendant of each of the following trees:

︷ ︸︸ ︷
q

s
s s s. . .

A
A
@@ ¡¡ , s

s k
TT ¢¢

τq

,
s

s k
TT ¢¢

τq s
s

sTT ¡¡

Let us denote ST1 = T and for q ≥ 2:

STq = {τ ∈ T \ {τ0}, τ has no descendants of type τ∗ = [τk
0 ], 1 ≤ k ≤ q − 1}

Example 2. For the first values of q the sets STq are:
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With this definition it is trivial the following

Lemma 1. STn j STm for all n ≥ m ≥ 1.

Denoting now ST r
q = {τ ∈ STq, ρ(τ) ≤ q + r}, we have the following

Theorem 1. A Runge–Kutta method satisfying (4) reaches order q + r if and
only if it satisfies the order condition for every tree in ST r

q , i.e.,

(5) bT Φ(τ) = 1/γ(τ), ∀ τ ∈ ST r
q

Proof. If q = 1 or r = 1 the proof is trivial. Let τ /∈ STq with q+1 ≤ ρ(τ) ≤ q+
r. It has at least a descendant τ ′ = [τ0, . . . , τ0] with order p = ρ(τ ′) ≤ q. If τ = τ ′,
the proof is trivial by C(q) and B(q). Otherwise, τ must have a descendant of the
form τ̂ = [τ ′, τ ′1, . . . , τ

′
k], k ≥ 0. Now, by C(q) the order condition for τ is satisfied if

it is satisfied the order condition corresponding to the tree τ∗, which has the same
order as τ obtained by replacing in τ the descendant τ̂ by τ̄ = [τp+1

0 , τ ′1, . . . , τ
′
k]. If

τ∗ ∈ ST r
q , the proof is concluded. Otherwise we can repeat the process until we

arrive at a tree in ST r
q .

2.2 Order results for two–step Runge–Kutta methods

Let us consider an s–stages Runge–Kutta method (A, b) fulfilling (4) and with order
p = q + r. Let us also denote by (Â, b̂) the coefficients of the composed method
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resulting after two consecutive steps of size h, given by the Butcher tableau

ĉ Â

b̂>
=

c A 0
e + c eb> A

b> b>
,

ê> = (e>, e>) and by Φ̂(τ) the 2s−dimensional tree functions associated to matrix
Â.

We are interested in obtaining the families of embedded methods (3), given by
the coefficients (Â, β̂), with β̂> = (β>, γ>) = (β1, . . . , βs, γ1, . . . , γs), with orders
q + l for l = 1, . . . , r. Since the composed method also satisfies C(q), Âĉj−1 = ĉj/j,
j = 1, . . . , q, we can apply Theorem 1 to the embedded method, replacing the order
conditions (5) by

β̂>Φ̂(τ) = 2ρ(τ)/γ(τ), ∀ τ ∈ ST r
q .

Theorem 2. For every k = 0, . . . , r there exist a family of embedded methods
(Â, β̂) of order q + k with lk = 2s − rank(Mq,k) free parameters, being Mq,k the
matrix whose columns are the vectors ê, ĉ, . . . , ĉq−1 and the vectors Φ̂(τ) with τ ∈
ST k

q .

Proof. Order q + k is equivalent to β̂>ĉj−1 = 2j−1/j, for j = 1, . . . , q and
β̂T Φ̂(τ) = 2ρ(τ)/γ(τ) for all τ ∈ ST k

q and they are equivalent to the linear system

β̂T Mq,k = (2, 22/2, . . . , 2q/q, 2ρ(τ)/γ(τ)) ∀τ ∈ ST k
q .

Since (bT , bT ) is always a solution of the above linear system, then it is compatible
and the number lk of free parameters in the solution β̂ are determined by the
Rouché–Fröbenius theorem which give us lk = 2s− rank(Mq,k).

2.3 Particular cases

For three–stage collocation methods of order ≥ 5 (s = 3, q = 3) such as Radau IIA
and Gauss,

—If k = 1, Ms,1 = [ê, ĉ, ĉ2, ĉ3] and rank(Ms,1) = 4. Then there exist a biparametric
family of embedded methods with order 4.

—If k = 2, Ms,2 = [ê, ĉ, ĉ2, ĉ3, ĉ4, Âĉ3] and rank(Ms,2) = 6. Then there is a unique
method of order ≥ 5 (the composed method) and therefore there is not any
embedded method with order 5.

For four–stage collocation methods of order ≥ 7 (s = 4, q = 4)

—If k = 1, Ms,1 = [ê, ĉ, ĉ2, ĉ3, ĉ4] and rank(Ms,1) = 5. Then there exist a three–
parameter family of embedded methods with order 5.

—If k = 2, Ms,2 = [ê, ĉ, . . . , ĉ5, Âĉ4] and rank(Ms,2) = 7. Then there is a one–
parameter family of embedded methods of order ≥ 6.

—If k = 3, Ms,3 = [ê, ĉ, . . . , ĉ6, Âĉ4, Âĉ4 · ĉ, Âĉ5, Â2ĉ4] and rank(Ms,3) = 8. The only
method satisfying these equations, and therefore with order ≥ 7, is the composed
method.

For five–stage collocation methods of order ≥ 9 (s = 5, q = 5)
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—If k = 1, Ms,1 = [ê, ĉ, . . . , ĉ5] and rank(Ms,1) = 6. Then there exist a four–
parameter family of embedded methods with order 6.

—If k = 2, Ms,2 = [ê, ĉ, . . . , ĉ6, Âĉ5] and rank(Ms,2) = 8. Then there is a two–
parameter family of embedded methods of order ≥ 7.

—If k = 3, Ms,3 = [ê, ĉ, . . . , ĉ7, Âĉ5, Âĉ5 · ĉ, Âĉ6, Â2ĉ5] and rank(Ms,3) = 10. The
only method satisfying these equations, and therefore with order ≥ 8, is the
composed method.

3. EMBEDDED FORMULAS FOR RADAU IIA METHODS.

In this section we present the construction of embedded methods for Radau IIA
methods with 3, 4 and 5 stages, taking into account not only the accuracy of the
formulas but also the stability properties so that the error estimate can fit the
actual error as closely as possible.

When a two–step method (Â, β̂) is applied to the linear scalar test equation
y′ = λy, we have

ŷn+2 = R̂(hλ)yn

where R̂(z) is the amplifying function of the method given by

R̂(z) = 1 + zβ̂T (I − zÂ)−1ê.

In particular, for the composed method (Â, b̂), it is clear that R̂(z) = R2(z), being
R(z) = P (z)/Q(z) the stability function of the base method.

For any embedded method (Â, β̂) of order p we have that R̂(z) = P̂ (z)/Q̂(z) is a
rational function of degree 2s. Moreover its denominator is Q̂(z) = det(I − zÂ) =
det(I−zA)2 = Q2(z). Here we have denoted by I the identity matrix of appropriate
dimension.

Since ŷn+2 approximates the local solution y(tn+2; tn, yn) = e2hλyn up to order
p, then

(6) R̂(z) = 1 + 2z + . . . + 2p zp

p!
+ zp+1β̂T Âp−1ĉ + . . . + z2sβ̂T Â2s−2ĉ +O(z2s+1)

and since we know the denominator of R̂(z), the free parameters in the numera-
tor P̂ (z) can be determined so that the embedded formula has adequate stability
properties.

To estimate properly the error in the stiff components it is desirable that |R̂(z)|
is not large in the complex region Reλ ≤ 0. In particular it is important that the
value |R̂(∞)| = |1− β̂T Â−1ê| is similar to the corresponding value |R(∞)|2 for the
composed method. Therefore, in the case of Radau IIA methods, we will search
for embedded methods for which R̂(∞) = 0 so that they are stiffly stable, like the
underlying formula, and so there is no need of “filtering” in the estimator.

3.1 Radau IIA with 3 stages

In this case it is possible to embed a method with order 4 and we have two free
parameters to choose the method having the most adequate stability properties.

Since

Q̂(z) =
(

1− 3
5
z +

3
20

z2 − 1
60

z3

)2
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then from (6) with p = 4,

P̂ (z) = R̂(z)Q̂(z) = 1 +
4
5
z +

13
50

z2 +
1
25

z3 +
1

400
z4 + uz5 + vz6

with u = β̂T Â3ĉ− 25

5!
and v = β̂T Â4ĉ− 6

5
u− 107

1200
.

Note that R̂(z) and R2(z) coincide up to terms of order z4 and since R(∞) = 0,
then

R̂(z) = R2(z) +
uz5 + vz6

Q̂(z)
.

We can choose the free parameters in such a way that R̂(∞) = 0. It is enough to
impose that v = 0, and this is achieved when

β̂T (Â4ĉ− 6
5
Â3ĉ) = − 277

1200
.

Then, the vector of coefficients of such a method of order 4 must satisfy the linear
system

β̂T [ê, ĉ, ĉ2, ĉ3, v̂, ŵ] =
(

2,
22

2
,
23

3
,
24

4
,− 277

1200
, u +

25

5!

)

being v̂ = Â4ĉ− 6
5
Â3ĉ. and ŵ = Â3ĉ. This system has a unique solution and hence

the coefficients of the estimator (bT , bT )− β̂T can be expressed in terms of the free
parameter u as

(bT , bT )− β̂T = u
4
5

(
19− 14

√
6, 19 + 14

√
6, 52,−29− 51

√
6,−29 + 51

√
6,−32

)
.

Let us observe that we cannot also impose u = 0, because the embedded method
would coincide with the composed method.

We can now investigate for which values of the available free parameter u the
embedded method will be A–stable. This is accomplished if |R̂(iy)|2 ≤ 1 or equiv-
alently if |P̂ (iy)|2 − |Q̂(iy)|2 ≤ 0 for all y ∈ R. After some calculations, it can be
seen that

|P̂ (iy)|2 − |Q̂(iy)|2 =
(

8
5
u− 1

1800

)
y6 −

(
2
25

u +
1

30000

)
y8+

(
u2 − 1

720000

)
y10 − 1

12960000
y12

and the method is A–stable if and only if
1

12960000
x3− (u2− 1

720000
)x2 +(

1
30000

+
2
25

u)x+
1

1800
− 8

5
u ≥ 0, for all x ≥ 0.

This condition is satisfied for all u ∈ [−0.001904604018365..., 1
2880 ].

Note that, since the integration is advanced with the Radau IIA formula, insta-
bilities on the numerical solution provided by the embedded method will not be
propagated, hence A–stability for the embedded formula is not necessary. Thus,
the parameter u can be chosen outside the above stability interval. However, we
will get a nice value for u (below) which belongs to this interval.



Two–step error estimators for implicit RK methods · 9

In order to choose a suitable value of the free parameter u we will consider the
linear test equation y′ = λy and following the ideas in [10] we will consider the
relative local error. However in this case, since our estimators are based on the
computations of the two last integration steps we will consider the relative local
error along two consecutive steps with the same stepsize

Err(z) =
∣∣∣∣
y(tn+2; tn, yn)− yn+2

yn

∣∣∣∣ = |e2z −R2(z)|.

being z = hλ. This error is estimated with the proposed two–step estimator by the
quantity

EstTS(z) = |R2(z)− R̂(z)|,
while the estimate provided by extrapolation is

Estext(z) = |R2(z)−R(2z)|/31.

Also, the estimator used by Hairer and Wanner in RADAU5 [7] gives

EstHW (z) = |R(z)(R(z)− R̃(z))/(1− zγ)|
with R̃(z) the amplifying function of the embedded third–order method and γ the
only real eigenvalue of the matrix A (the estimator proposed by de Swart and
Söderlind in [10] gives the same error function of z scaled by a factor of 1/(50γ)).

For Radau IIA method of three stages these functions of z can be easily computed
giving

EstTS(z) =

∣∣∣∣∣∣∣∣∣

uz5

(
1− 3

5
z +

3
20

z2 − 1
60

z3

)2

∣∣∣∣∣∣∣∣∣

Estext(z) =

∣∣∣∣∣∣∣∣∣

z6

(
1− 8

155
z +

1
155

z2

)

3600
(

1− 3
5
z +

3
20

z2 − 1
60

z3

)2 (
1− 6

5
z +

3
5
z2 − 2

15
z3

)

∣∣∣∣∣∣∣∣∣

EstHW (z) =

∣∣∣∣∣∣∣∣∣

γ

(
1 +

2
5
z +

1
20

z2

)
z4

60(1− zγ)
(

1− 3
5
z +

3
20

z2 − 1
60

z3

)2

∣∣∣∣∣∣∣∣∣
.

Concerning the selection of the parameter u, we must note that the estimator
is a linear homogeneous function of u and therefore changing u will imply just
a scaling of the estimate. It is important however that the estimator does not
underestimate the real error as pointed out in [10]. We have selected the value
u = 0.0000529585077373525889677785167637, for which

Err(x) ≤ EstTS(x), ∀x ≤ x0 = −2.605...

Err(x)− EstTS(x) ≤ 8.3 · 10−5, Err(x) ≤ 1.96 ·EstTS(x), ∀x ∈ (x0, 0].
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Fig. 1. Estimators on the negative real axis

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  10  20  30  40

y

Err
EstTs
Estext
EstHW
EstSS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5

y

Err
EstTs
Estext
EstHW
EstSS

Fig. 2. Estimators on the imaginary axis

That is, the estimated error is greater than the actual error along the negative
real axis except in the interval (x0, 0) where the actual error is very close to the
estimated one. Moreover, without the absolute value, neither Err(x) nor EstTS

change their signs on the negative real axis, which has some importance in linear
problems of high dimension.

In figure 1 we have plotted the functions EstTS(z), Estext(z), EstHW (z) and
the corresponding one for the estimator proposed by de Swart and Söderlind [10],
EstSS(z) = EstHW (z)/(50γ), together with the local error Err(z) for real values
of z ranging from -100 to 0 (left side of the figure), and from -2 to 0 (right side of
the figure). As it can be seen, the new estimator gives values that are closer to the
true local error than those provided by the estimator in RADAU5, and similar to
the ones given by the estimator by de Swart and Söderlind. In figure 2 we have
plotted the estimate functions taking values of z along the imaginary axis, z = iy,
with y ranging from 0 to 40 (left hand side) and from 0 to 5 (right hand side).

3.2 Radau IIA with 4 stages

In this case it is possible to embed a method with order 6 and we have one free
parameter to choose the method having the most adequate stability properties.

Since R̂(z) and R2(z) coincide up to terms of order z6 and R(∞) = 0 we have



Two–step error estimators for implicit RK methods · 11

that,

R̂(z) = R2(z) +
uz7 + vz8

Q2(z)

with u = βT Â5ĉ− 27/7! and v = βT Â6ĉ− 8
7
u− 1493

235200
. Moreover,

Q̂(z) = Q2(z) =
(

1− 4
7
z +

1
7
z2 − 2

105
z3 +

1
840

z4

)2

,

and

P̂ (z) = P 2(z) + uz7 + vz8 =
(

1 +
3
7
z +

1
14

z2 +
1

210
z3

)2

+ uz7 + vz8.

Here v must be non zero to have an embedded method (different from the composed
method) of order 6 exactly. Then R̂(∞) = v/750600 while R2(z) = O(1/z2) and
the error in the stiff components can be overestimated.

We can also search for an embedded method of order 5 with R̂(∞) = 0. By
imposing the order five conditions

β̂T [ê, ĉ, ĉ2, ĉ3, ĉ4] =
(

2,
22

2
,
23

3
,
24

4
,
25

5

)

we get a three-parameter family of methods of order 5. For these methods the
amplifying function R̂(z) = P̂ (z)/Q̂(z) is given by Q̂(z) = Q2(z) and

P̂ (z) = P 2(z) + wz6 + uz7 + vz8

with

w = β̂T Â4ĉ− 26/6!

u = β̂T Â5ĉ− 8
7
w − 8

315

v = β̂T Â6ĉ− 34
49

w − 8
7
u− 1493

235200

Clearly, R̂(∞) = 0 if and only if v = 0, that is,

β̂T Â6ĉ =
34
49

w +
8
7
u +

1493
235200

.

One possibility for choosing the free parameters w, u is to make the main term
of the local error of the embedded method proportional to the sixth derivative of
the solution, that is

∑
τ∈T

ρ(τ)=6

α(τ)(26 − γ(τ)β̂T Φ̂(τ))F (τ)(y0) = K
∑
τ∈T

ρ(τ)=6

α(τ)F (τ)(y0) = K6!y(6)(t0)

for some constant K. Taking into account the simplifying assumptions, this is
accomplished if and only if β̂T (ĉ5 − 5Âĉ4) = 0 and since Â6ĉ = Â3ĉ4/4!, Â5ĉ =
Â2ĉ4/4! and Â4ĉ = Âĉ4/4!, the family of embedded methods satisfying the required
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conditions is given by

β̂T
[
ê, ĉ, ĉ2, ĉ3, ĉ4, ĉ5, Âĉ4,

(
Â3 − 8

7
Â2

)
ĉ4

]
=

(
2,

22

2
,
23

3
,
24

4
,
25

5
,
32
3
− K

6
,
32
15
− K

30
,−16001

29400
+

K

49

)

being K a free parameter. For K = 0 we get the composed seventh–order method
and the estimate is not valid.

We have followed for the selection of the parameter K a similar approach to
that used for the three–stage method. In this case we have determined numeri-
cally the values of K for which the embedded method is A–stable, obtaining the
interval [−0.00733464..., 0]. For K = −0.00101470776549531547265801395193 the
estimated error is greater than the actual error along the negative real axis.

3.3 Radau IIA with 5 stages

In this case it is possible to embed a method with order 7 and we have two free
parameters. In these conditions

Q(z) = 1− 5
9
z +

5
36

z2 − 5
252

z3 +
5

3024
z4 − 1

15120
z5,

P (z) = 1 +
4
9
z +

1
12

z2 +
1

126
z3 +

1
3024

z4

and

R̂(z) = R2(z) +
wz8 + vz9 + uz10

Q2(z)
with

w = β̂T Â6ĉ− 28/8!

v = β̂T Â7ĉ− 10
9

β̂T Â6ĉ− 16
2835

u = β̂T Â8ĉ− 10
9

β̂T Â7ĉ +
95
162

β̂T Â6ĉ− 185771
76204800

We can select the free parameters so that u = 0 and then, the one–parameter
family of embedded methods is determined by the eight conditions of order 7 and

the condition β̂T

(
Â8ĉ− 10

9
Â7ĉ +

95
162

Â6ĉ

)
=

185771
76204800

. The free parameter can

again be selected taking into account the stability of the embedded method and
experimental experience.

4. NUMERICAL EXPERIMENTS.

In this section we present some numerical experiments showing the performance of
the proposed error estimate for the three-stage Radau IIA method.

In order to compare the different error estimates we have developed a code, not
intended to compete with standard codes, but rather to asses the performance of
several estimators when they work in similar conditions. The code can control the
stepsize by means of the following local error estimates:
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Ext – Local extrapolation.
HW – The Hairer and Wanner one–step estimator used in RADAU5.
HW2 – The HW estimator used in a two–step mode.

Here, the code is forced to take two consecutive steps with the same steplength.
If the error test is not satisfied in one of these two consecutive steps, both are
rejected. This estimator will help us to compare HW with the proposed two–step
one.

SS – The one–step estimator by de Swart and Söderlind.
TS – The proposed two–step error estimator.

The stage equations are solved by a modified Newton scheme, and the iterations
are stopped when two consecutive approximations differ less than Tol/100. The
Jacobian matrix is computed, and the corresponding matrix factored, at each step
when one-step estimators are used, whereas for two-step estimators the LU factor-
ization carried out on the first step (of each pair) is used on the second step and
there is no need of recomputing the Jacobian matrix (that is one of the advantages
of using two step-estimators in the way proposed in this paper). In a production
code this strategy could be improved monitoring the rate of convergence on the
first step and if it is not adequate, forming a new Jacobian for the second step.
This could improve the efficiency by reducing the number of convergence failures
or well reducing the number of iterations on the second step. Nevertheless we have
considered such an strategy unnecessary for our experiments.

We have integrated a number of stiff problems, including those of the well known
DETEST package [5] and we present here the results obtained with the following
two problems:

Problem 1.- The Van der Pol oscillator (see e. g. [7] pp. 144) with integration
interval [0, 2].

Problem 2.- The CUSP problem (see e. g. [7] pp. 144) on the interval [0, 1].

First, in order to show how the estimations approximate the actual local error we
have integrated the problems with the code using local extrapolation to control the
step-size and along this integration we have computed at each step the estimated
errors provided by the different estimators. The values obtained for problem 1 and
Tol = 10−6 are displayed in figure 3. We have pictured just the most representative
areas of the integration interval and as it can be appreciated extrapolation (Ext)
gives the most accurate estimations. It has however the minor inconvenience that
in some areas the actual error is slightly underestimated. The two-step estimator
(TS) gives accurate estimations, which are in general better than SS. On the other
hand, SS estimates better than HW and HW2 (which work similarly).

Secondly, to asses the performance of the estimators when they are used (sepa-
rately) to control the step-size we have computed for each problem, error tolerance
and error estimate the global error at the end point of the integration interval (GE),
the number of successful steps (NSTEP), the number of rejected steps in the esti-
mation test (NRE), the number of rejected steps due to convergence failure in the
iterative scheme (NRC), the number of evaluations of the Jacobian matrix (JAC),
the number of LU factorizations (NLU), the number of triangular systems solved
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Fig. 3. Van der Pol oscillator: actual and estimated local error with Tol = 10−6

(NSOL), the number of evaluations of the derivative function (NFN), and the av-
erage number of iterations required to reach convergence at each step (NITER).
In tables 1 and 2 we present the results for the Van der Pol and CUSP problems
respectively.

When a two–step mode is used (TS and HW2 rows) two values for the average
number of iterations are given. They correspond to the first and the second step
respectively. When extrapolation is used (Ext row) the three data for NITER
correspond to the first, second and double step respectively.

It can be seen in the tables that in general the behavior of the new two–step error
estimator (TS) is similar to local extrapolation and with both estimators the final
errors are in a better agreement with the tolerance specified than with the other
estimators. In this sense, SS performs better than HW and HW2.

For small error tolerances the code with the new two–step error estimator takes
less (or a similar number of) steps to accomplish the integration than with the
one–step estimators (HW and SS), for a similar global error, and this implies that
the new estimator performs in general more efficiently. This difference between the
behavior of the estimators is more clear when the error tolerance is decreased, as it
can be expected from the fact that in one case we are using a pair 3(5) to estimate
the local error while in the other case we are using a pair 4(5). It is also interesting
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Table 1. Van der Pol problem.

TOL EST GE NSTEP NRE NRC JAC LU NSOL NFN NITER

10−2 Ext 0.33D − 04 174 0 70 87 372 2094 3232 2.6, 3.2, 3.2
TS 0.75D − 04 164 0 69 82 246 1752 2713 2.7, 3.4
HW 0.51D − 04 135 19 26 135 360 1544 2149 3.3
HW2 0.90D − 05 202 26 52 101 286 2133 2875 2.5, 3.0
SS 0.94D − 03 103 9 35 103 294 1424 2038 3.9

10−4 Ext 0.13D − 04 258 10 66 129 566 3534 5422 3.2, 3.8, 3.6
TS 0.84D − 05 238 12 74 119 334 2838 4378 3.4, 4.0
HW 0.28D − 06 326 24 17 326 734 2820 3754 3.1
HW2 0.10D − 06 392 42 42 196 482 3606 4801 2.8, 3.1
SS 0.42D − 05 206 18 38 206 524 2460 3463 3.8

10−5 Ext 0.19D − 05 330 20 62 165 704 4450 6784 3.4, 4.0, 3.7
TS 0.26D − 05 316 62 62 158 454 3762 5755 3.5, 4.0
HW 0.53D − 07 546 41 0 546 1174 4301 5569 3.0
HW2 0.97D − 08 622 46 38 311 706 5181 6796 2.8, 3.0
SS 0.30D − 06 316 18 27 316 722 3076 4192 3.5

10−6 Ext 0.32D − 06 460 36 65 230 990 5970 9076 3.4, 3.9, 3.6
TS 0.19D − 06 416 58 58 208 538 4448 6766 3.5, 4.0
HW 0.37D − 08 964 8 0 964 1944 5932 7438 2.5
HW2 0.20D − 08 1012 62 8 506 1082 7284 9319 2.5, 2.9
SS 0.27D − 07 526 18 19 526 1126 4394 5830 3.2

10−7 Ext 0.23D − 06 594 26 55 297 1236 7240 10957 3.5, 3.9, 3.6
TS 0.24D − 07 592 24 58 296 674 5390 8170 3.5, 4.0
HW 0.18D − 09 1727 8 0 1727 3470 9929 12289 2.4
HW2 0.17D − 09 1752 14 0 876 1766 10286 12778 2.3, 2.5
SS 0.59D − 08 888 8 0 888 1792 6390 8239 3.1

10−8 Ext 0.30D − 07 840 16 57 420 1714 9712 14665 3.5, 3.8, 3.5
TS 0.27D − 08 836 24 12 418 872 6456 9700 3.4, 3.9
HW 0.20D − 10 3090 8 0 3090 6196 17262 21244 2.3
HW2 0.20D − 10 3118 14 0 1559 3132 17608 21712 2.3, 2.4
SS 0.29D − 09 1594 8 0 1594 3204 10968 14047 2.9

10−9 Ext 0.42D − 08 1240 12 46 620 2504 13326 20065 3.4, 3.7, 3.3
TS 0.35D − 09 1352 26 0 676 1378 9378 14065 3.2, 3.5
HW 0.12D − 10 5525 9 0 5525 11068 30231 37040 2.2
HW2 0.12D − 10 5558 18 0 2779 5576 30636 37585 2.2, 2.3
SS 0.26D − 10 2851 8 0 2851 5718 17897 22555 2.6
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Table 2. CUSP problem.

TOL EST GE NSTEP NRE NRC JAC LU NSOL NFN NITER

10−2 Ext 0.33D − 04 152 0 81 76 350 1402 2116 1.9, 2.4, 2.4
TS 0.25D − 04 142 0 82 71 250 1214 1831 2.0, 2.6
HW 0.14D − 03 83 0 53 83 272 943 1318 3.0
HW2 0.82D − 04 144 0 81 72 248 1337 1753 1.9, 2.5
SS 0.39D − 03 83 0 55 83 276 993 1387 3.3

10−4 Ext 0.19D − 05 198 0 86 99 444 2438 3742 2.6, 3.3, 3.2
TS 0.39D − 05 188 0 90 94 298 2066 3184 2.8, 3.3
HW 0.78D − 06 153 23 35 153 422 1774 2433 3.4
HW2 0.45D − 06 226 24 77 113 340 2496 3385 2.5, 3.0
SS 0.25D − 04 113 11 47 113 342 1658 2362 4.2

10−5 Ext 0.24D − 06 236 0 88 118 516 3218 4957 3.0, 3.7, 3.5
TS 0.12D − 05 214 4 86 107 324 2564 3958 3.2, 3.9
HW 0.37D − 07 235 36 36 235 614 2522 3449 3.3
HW2 0.13D − 07 312 42 64 156 426 3292 4438 2.7, 3.1
SS 0.83D − 06 161 29 43 161 466 2306 3256 4.1

10−6 Ext 0.28D − 07 284 6 98 142 610 4018 6166 3.3, 4.0, 3.8
TS 0.76D − 07 266 14 92 133 380 3276 5032 3.4, 4.1
HW 0.22D − 08 361 38 32 361 862 3412 4595 3.2
HW2 0.12D − 08 446 52 56 223 558 4316 5758 2.9, 3.2
SS 0.16D − 07 232 41 47 232 640 2967 4123 3.9

10−7 Ext 0.30D − 07 362 14 99 181 800 5232 8023 3.5, 4.2, 3.7
TS 0.81D − 07 346 52 81 173 494 4300 6571 3.7, 4.3
HW 0.12D − 09 594 26 33 594 1306 4749 6272 2.9
HW2 0.14D − 09 688 80 56 344 836 6090 8035 2.7, 3.1
SS 0.52D − 08 355 38 48 355 882 3941 5425 3.7

10−8 Ext 0.14D − 08 466 26 92 233 1010 6670 10165 3.7, 4.3, 3.8
TS 0.17D − 08 474 84 76 237 648 5514 8389 3.7, 4.2
HW 0.13D − 10 1015 16 26 1015 2114 6859 8799 2.6
HW2 0.72D − 11 1112 50 58 556 1232 8241 10669 2.5, 2.8
SS 0.21D − 09 572 25 47 572 1288 5447 7399 3.5

10−9 Ext 0.35D − 09 638 48 87 319 1370 8766 13294 3.7, 4.2, 3.7
TS 0.12D − 09 656 74 71 328 806 6750 10219 3.7, 4.2
HW 0.25D − 11 1777 10 15 1777 3604 10769 13497 2.4
HW2 0.12D − 11 1860 38 49 930 1952 12258 15565 2.4, 2.6
SS 0.10D − 10 967 16 44 967 2054 8111 10804 3.3
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Fig. 4. Efficiency plot for Van der Pol problem using the code RADAU5

to note that for small tolerances HW and HW2 give similar number of steps. The
two–step strategy is however advantageous because it lets the code integrate with
fewer LU factorizations.

For large tolerances in general the one–step estimators (HW and SS) requires
fewer steps to integrate the problem than the two–step estimators and consequently
they need fewer evaluations of the derivative function and fewer solutions of tri-
angular systems. The reason for it seems to be that the two–step strategy is less
flexible, and the stepsize is adjusted less frequently. This can be observed from the
results obtained with HW and HW2. However, the two–step strategy lets the code
integrate doing fewer LU factorizations in any case.

It is also remarkable that with the two–step strategy and large error tolerances,
there are many steps rejected because the iterative scheme cannot solve the implicit
equations. Also in the second step the iterative scheme requires more iterations
than in the first step, and this can be explained because the second step uses the
Jacobian matrix computed in the first step. A better strategy of re–evaluating the
Jacobian could improve the efficiency in a production code.

Finally, to test the efficiency of the new estimator in a production code, instead
of using the code we have developed, we have compared the performance of the code
RADAU5 with a modification of it using the proposed two–step estimate (TS). In
figures 4 and 5 we give the efficiency plots (CPU time versus Log(GE)) obtained
integrating the problems 1 and 2 with absolute and relative error tolerances 10−3,
10−4, . . . . For the Van der Pol problem we have taken for this experiment a longer
integration interval [0, 20] to get more significant CPU time values. As expected,
for small error tolerances it is clearly seen in the figures that the code improves its
efficiency when the two–step estimator (TS) is used, while the performance with
both estimators is similar for large error tolerances.
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