Métodos Analíticos en Estadística - Curso 2007/08 Métodos numéricos para Estadística

Tema 5: Interpolación **Problemas**

1. Sea

$$V_n(x) = \det \begin{pmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & x_1^n \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_{n-1} & x_{n-1}^2 & \cdots & x_{n-1}^n \\ 1 & x & x^2 & \cdots & x^n \end{pmatrix}$$

- (a) Demostrar que $V_n \in \Pi_n$, y que tiene por ceros a $x_0, x_1, \ldots, x_{n-1}$.
- (b) Obtener la fórmula $V_n(x) = \prod_{j=0}^{n-1} (x x_j) V_{n-1}(x_{n-1}).$
- (c) Demostrar que $V_n(x_n) = \prod_{0 \le j < i \le n} (x_i x_j)$.
- 2. Para $f(x) = e^x$ hallar el polinomio interpolador de Lagrange con nodos en 1 y 2 y acotar el error de interpolación.
- 3. Determinar el polinomio interpolador $L_n(f;x)$ asociado a los nodos x_0, x_1, \ldots, x_n para las funciones:

(a)
$$f(x) = \prod_{j=0}^{n} (x - x_j),$$
 (b) $f(x) = x^{n+1}.$

4. Se han recogido los siguientes datos de un experimento

$$\begin{array}{c|cccc} t \; (\text{en seg.}) & 0 & 2 & 4 & 5 \\ \hline v \; (\text{en m/seg.}) & 0 & 22 & 75 & 100 \\ \end{array}$$

Construir el polinomio de interpolación con dichos datos y estimar la velocidad a los 4.25 segundos.

5. Determinar de qué grado es el polinomio p del que se conoce los siguientes valores

- 6. Expresar x^2 , x^3 y x^4 como combinaciones lineales de x, x(x-1), x(x-1)(x-2) y x(x-1)(x-2)(x-3).
- 7. Se considera el problema de interpolación consistente en hallar un polinomio $p \in \Pi_n$, verificando:

$$\int_0^{x_i} p(x) \, dx = \alpha_i, \ i = 0, 1, \dots, n.$$

Determinar que condición debe verificar $\{x_i\}_{i=0}^n$ para que el problema tenga solución única.

8. La siguiente tabla presenta las medidas de cómo varía la temperatura de un sistema. La variable t representa el instante de tiempo y la función T(t) la temperatura. Se pide, en primer lugar, calcular un polinomio de grado ≤ 3 que interpole los 4 primeros datos, y a continuación, aprovechando los cálculos, uno de grado ≤ 4 que interpole los datos de toda la tabla.

Evaluarlos en el punto 3.6. ¿Crees que se ha mejorado la aproximación?

- 9. Hallar el polinomio interpolador que toma los valores $(k, (-1)^{k+1}), k = 1, 2, \dots, 5$.
- 10. Interpolar la función $f(x) = \ln x$ por un polinomio cuadrático en x = 10, 11, 12. Estimar el error cometido al aproximar ln 11.1 por el valor del interpolante. Comparar el resultado con el valor que da la calculadora.
- 11. Un atleta ha realizado una buena marca en los 100 metros lisos obteniendo un tiempo de 11 segundos y 21 centésimas. Además, se ha medido el tiempo en diversos momentos.

- (a) Estimar por interpolación polinomial la marca realizada a los 60 metros, usando la formulación de Newton.
- (b) Suponiendo que el atleta siguiera corriendo, estimar por extrapolación la marca de los 200 metros lisos. Comenta el resultado
- 12. Demostrar que:
 - (a) $f[x_0, x_1, \ldots, x_n]$ es una función simétrica en sus argumentos.

(b) Si
$$\omega(x) = \prod_{j=0}^{n} (x - x_j)$$
, es el polinomio nodal. Entonces, $f[x_0, x_1, \dots, x_n] = \sum_{j=0}^{n} \frac{f(x_j)}{\omega'(x_j)}$.

13. Sean $\{l_i(x)\}_{i=0}^n$ los polinomios fundamentales de Lagrange respecto a n+1 nodos $\{x_i\}_{i=0}^n$ distintos entre sí. Demostrar que forman una base en Π_n y que

$$\sum_{i=0}^{n} l_i(x) = 1.$$

- 14. Sea $f(x) = e^x$ y $p_n(x; f)$ el polinomio que interpola a f en n+1 puntos distintos de [0, 1]. Calcular el menor n de tal forma que $|e^x p_n(x; f)| \le 10^{-6}$.
- 15. Construir el polinomio interpolador a $f(x) = \cos(\pi \cdot x)$ usando como nodos $\{0, 0.25, 0.5, 0.75, 1\}$. Posteriormente, intégrelo sobre [0, 1], compare el resultado con

$$\int_0^1 \cos(\pi x) \, dx = 0.$$

¿Qué puedes concluir?.

16. Sea la función J definida como: $J(x) = \int_0^x e^{-t} sen(t) dt$. Demostrar que el error cometido al sustituir J por su recta interpoladora en los puntos x_0 y $x_1 > x_0$ no excede de:

$$e^{-x_0} \frac{(x_1 - x_0)^2}{4\sqrt{2}},$$

en ningún punto del intervalo.

17. Cuando los nodos de interpolación están igualmente espaciados, es decir, son de la forma

$$x_j = x_0 + jh, \quad j = 0, 1, \dots, n, \quad h > 0$$

la fórmula de interpolación se puede simplificar usando las llamadas diferencias finitas progresivas. Se define la diferencia finita progresiva de orden k de una sucesión y_0, y_1, y_2, \ldots , como

$$\Delta^{0} y_{i} = y_{i}, \quad \Delta y_{i} = y_{i+1} - y_{i}, \quad i = 0, 1, \dots,$$

 $\Delta^{k} y_{i} = \Delta(\Delta^{k-1} y_{i}), \quad k = 2, 3, \dots.$

Demostrar

(a)
$$\Delta^k y_0 = \sum_{i=0}^k (-1)^i \binom{k}{i} y_{k-i}$$
.

(b)
$$y_k = \sum_{i=0}^k \binom{k}{i} \Delta^i y_0.$$

(c)
$$f[x_0, x_1, \dots, x_n] = \frac{\Delta^n f(x_0)}{n!h^n}$$
.

(d)
$$p_n(x; f) = p_n(x_0 + sh; f) = \sum_{k=0}^n {s \choose k} \Delta^k f(x_0).$$

18. Los datos contenidos en la siguiente tabla fueron tomados de un lanzamiento de un cohete

Tiempo(seg)	0	60	120	180	240
Velocidad (millas/Seg)	0	0.0824	0.2147	0.6502	1.3851

- (a) Determinar la velocidad aproximada del cohete a los 90 seg de despegar.
- (b) Determinar la aceleración aproximada del cohete a los 150 seg de despegar.
- (c) Calcular el desplazamiento aproximado del cohete a los 150 seg de despegar.
- 19. La población ganadera de España (en miles de cabezas) durante varios años fue la siguiente:

Determinar la población en el año de 1967. Comparar con el valor real de 163.6 miles de cabezas.

20. Sean x_0, x_1, \ldots, x_n distintos puntos reales y n+1 ordenadas y_0, y_1, \ldots, y_n . Probar que el siguiente problema de interpolación tiene solución única:

Calcular la función

$$P_n(x) = \sum_{j=0}^n c_j e^{jx}$$

tal que

$$P_n(x_i) = y_i, \quad i = 0, 1, \dots, n.$$

Dar una expresión de tipo Lagrange para dicha función interpoladora.

21. Hallar el polinomio ${\cal P}$ de menor grado que verifique

$$P(-1) = P'(-1) = 0, P(0) = 1, P'(0) = 0, P(1) = P'(1) = 0.$$

Supongamos que el polinomio P construido se utiliza para aproximar la función $f(x) = \cos^2(\pi x/2)$ en [-1,1]. Dar una expresión del error y estimarlo.

22. Una función f(x) verifica

$$f'(0) = 1, f(\pi/2) = 1, f'(\pi/2) = 0, f(\pi) = 0, f'(\pi) = -1.$$

¿Se puede construir el polinomio de interpolación de Hermite con estos datos? Si se sabe que $f(x) = \sin x$, hacer lo necesario para convertir este problema en un problema de interpolación de Hermite y calcular dicho polinomio interpolador.

23. Sea la integral de Fresnel:

$$F(t) = \int_0^t \cos(\frac{\pi}{2}x^2) dx$$

teniendo en cuenta la siguiente tabla.

$$\begin{array}{c|cccc} t_i & 2 & 2.02 & 2.06 & 2.08 \\ \hline F(t_i) & 0.488253 & 0.5082 & 0.546811 & 0.564828 \\ \end{array}$$

- (a) Estimar F(2.04) usando el polinomio interpolador en la forma de Newton. Acotar el error.
- (b) Si además conocemos

$$\begin{array}{c|ccccc} t_i & 2 & 2.02 & 2.06 & 2.08 \\ \hline F'(t_i) & 1 & 0.992036 & 0.92768 & 0.871419 \end{array}$$

Hallar el polinomio de interpolación de Hermite que interpola a $\{(t_i, F(t_i)), (t_i, F'(t_i))\}$. Estimar F(2.04) y acotar el error en dicha aproximación.

- 24. Construir el polinomio p(x) de grado no superior a 3 tal que p(0) = 1, p(2) = 3, p'(-1) = 4 y p''(0) = 0. ¿Será único?
- 25. La función f verifica f(1)=2, $f^{'}(1)=3$, f(2)=6, $f^{'}(2)=7$, $f^{''}(2)=8$. Determinar el polinomio de interpolación de Hermite.
- 26. Un coche que viaja en una carretera recta es cronometrado en algunos puntos. Los datos de las observaciones se dan en la siguiente tabla donde el tiempo está en segundos, la distancia en pies y la velocidad en pies por segundo. Use un polinomio de Hermite para predecir la posición del coche y su velocidad cuando t=10 seg.

- 27. Se considera la función f(x) = |x| y el conjunto de nodos $\{-2,0,2\}$.
 - (a) Calcular el polinomio de interpolación de Lagrange.
 - (b) Calcular el polinomio de interpolación de Hermite en $\{-2, -2, 0, 2, 2\}$.
 - (c) Estúdiese ambas interpolaciones en [1,2]. ¿Cuál de ellas aparentemente es mejor?.
- 28. (a) Probar las siguientes fórmulas

$$\sum_{j=1}^{m-1} \sin\left(\frac{2\pi jk}{m}\right) = 0, \quad m \ge 2, \quad k = 0, \pm 1, \pm 2, \dots$$

$$\sum_{j=0}^{m-1} \cos\left(\frac{2\pi jk}{m}\right) = \begin{cases} m, & \text{si } k = m \\ 0, & \text{si } k \neq m \end{cases}$$

(b) Usando las fórmulas anteriores desarrollar

$$\sum_{j=0}^{m-1} \cos\left(\frac{2\pi jk}{m}\right) \cos\left(\frac{2\pi jl}{m}\right), \qquad \sum_{j=1}^{m-1} \sin\left(\frac{2\pi jk}{m}\right) \sin\left(\frac{2\pi jl}{m}\right),$$

$$\sum_{j=0}^{m-1} \cos\left(\frac{2\pi jk}{m}\right) \sin\left(\frac{2\pi jl}{m}\right), \qquad 0 \le k, l \le m-1.$$

- 29. Obtener el polinomio interpolador trigonométrico sobre los nodos $x_j = 2\pi j/(2n+1), \ j=0,1,\ldots,2n,$ para la función $f(x) = \frac{x}{2\pi} E[\frac{x}{2\pi}].$
- 30. Calcular la transformada discreta de Fourier de orden m=2n+1 de las siguientes secuencias
 - (a) $x_k = 1, 0 \le k \le 2n$.
 - (b) $x_k = (-1)^k$, $0 \le k \le 2n$.
 - (c) $x_k = k, 0 \le k \le 2n$.