Métodos Analíticos en Estadística

TEOREMA DE APROXIMACIÓN DE WEIERSTRASS

Teorema 1 (Teorema de aproximación de Weierstrass)

Sea $f \in C[a,b]$ y cualquier $\epsilon > 0$. Existe un polinomio p(x) de tal forma que

$$|f(x) - p(x)| < \epsilon, \quad a \le x \le b.$$

Previamente a la demostración hay que definir los llamados operadores monótonos y probar otro teorema.

Dado un operador lineal

$$L: C[a,b] \longrightarrow C[a,b], \qquad Lf \in C[a,b], \forall f \in C[a,b],$$

se dice que es un operador lineal monótono sii verifica

si
$$f(x) \le g(x)$$
, $\forall x \in [a, b] \Rightarrow Lf(x) \le Lg(x)$, $\forall x \in [a, b]$,

lo que denotamos como

$$f \le g \Rightarrow L_n f \le L_n g$$
.

Teorema 2 Para cualquier sucesión de operadores lineales monótonos $\{L_n\}_{n=0}^{\infty}$ en C[a,b] las siguientes sentencias son equivalentes:

- (i) $L_n f \to f$ (uniformemente) para toda $f \in C[a, b]$.
- (ii) $L_n f \to f$ (uniformemente) para las tres funciones $f(x) = 1, x, x^2$.
- (iii) $L_n 1 \to 1$ y $(L_n \phi_t)(t) \to 0$ uniformemente para todo $t \in [a, b]$, donde $\phi_t(x) = (t x)^2$.

Demostración Teorema 2: La implicación $(i) \Rightarrow (ii)$ es trivial.

Para demostrar que $(ii) \Rightarrow (iii)$ se denota $f_i(x) = x^i$, i = 0, 1, 2. Para cada $t \in [a, b]$ arbitrario pero fijo,

$$\phi_t(x) = (t - x)^2 = t^2 - 2tx + x^2 = t^2 f_0(x) - 2t f_1(x) + f_2(x).$$

Por tanto,

$$L_n \phi_t(x) = t^2 L_n f_0(x) - 2t L_n f_1(x) + L_n f_2(x).$$

Demostrar que

$$||L_n \phi_t||_{\infty} \le C_0 ||L_n f_0 - f_0||_{\infty} + C_1 ||L_n f_1 - f_1||_{\infty} + ||L_n f_2 - f_2||_{\infty} \longrightarrow 0$$

Sugerencia: evaluar el caso x = t.

Para probar que $(iii) \Rightarrow (i)$ se coge una función arbitraria $f \in C[a,b]$, que será uniformemente continua, esto es,

$$\forall \epsilon > 0, \ \exists \delta > 0, \ \text{tal que } |x - y| < \delta \ \Rightarrow \ |f(x) - f(y)| < \epsilon.$$

Denotamos por

$$\alpha = 2 \frac{\parallel f \parallel_{\infty}}{\delta^2}$$

y elegimos un punto $t \in [a, b]$ arbitrario pero fijo.

Aplicando la continuidad uniforme demostrar que para todo $x \in [a, b]$

$$|f(t) - f(x)| \le \epsilon + \alpha \phi_t(x).$$

Para expresar esto en forma funcional, definimos $f_0(x) = 1$, y así tenemos que (recuérdese que t está fijo)

$$-\epsilon f_0 - \alpha \phi_t \le f(t) f_0 - f \le \epsilon f_0 + \alpha \phi_t$$

por lo que podemos aplicar que los operadores L_n son monótonos:

$$-\epsilon L_n f_0 - \alpha L_n \phi_t \le f(t) L_n f_0 - L_n f \le \epsilon L_n f_0 + \alpha L_n \phi_t.$$

Demostrar a partir de aquí que

$$|f(t) - (L_n f)(t)| \longrightarrow 0$$
 uniformemente en $t \in [a, b]$

DEMOSTRACIÓN TEOREMA 1: Demostrar que podemos suponer sin pérdida de generalidad que estamos en el intervalo [0, 1].

Para cada $f \in C[0,1]$ se define la sucesión de polinomios de Bernstein $\{B_n\}_{n=0}^{\infty}$ dados por

$$(B_n f)(x) = \sum_{k=0}^n \binom{n}{k} f\left(\frac{k}{n}\right) x^k (1-x)^{n-k}.$$
 (1)

Demostrar que esta fórmula (1) define una sucesión de operadores lineales monótonos en C[0,1]. Por tanto, verifica el Teorema 2.

Demostrar que $B_nf \longrightarrow f$ para $f=1,x,x^2$ con lo que tendríamos demostrado el teorema. Sugerencia: Para $f(x)=x^2$ usar que

$$\frac{k}{n} = \frac{k-1}{n} + \frac{1}{n}.$$